Effect of the solvent nature on the biological activity of gold-containing systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gold nanoparticles were prepared by metal-vapor synthesis using isopropanol, acetone or toluene as dispersion media. The electronic states of the metal and the nature of the sorbed layer on the surface of the nanoparticles were studied. The analysis of photoelectron spectra of the obtained nanoparticles showed that regardless of the synthesis conditions, gold in all samples is in the Au0, Au+ and Au3+ states and a carbon-containing shell is present on all types of metal particles. The study of anticancer activity of nanoparticles in vitro with human cell lines showed the dependence of biological activity on their interaction time of samples obtained in toluene dispersion medium. The metabolic activity of gold nanoparticles obtained in isopropanol or acetone medium decreased in the earliest period of testing.

Full Text

Restricted Access

About the authors

A. A. Voronova

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Russian Federation, 119334 Moscow

A. V. Naumkin

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Russian Federation, 119334 Moscow

A. Yu. Pereyaslavtsev

Dukhov Automatics Research Institute

Email: alexandervasilkov@yandex.ru
Russian Federation, 127030 Moscow

T. Batsalova

Paisii Hilendarski University of Plovdiv

Email: alexandervasilkov@yandex.ru

Faculty of Biology

Bulgaria, 4000 Plovdiv

B. Dzhambazov

Paisii Hilendarski University of Plovdiv

Email: alexandervasilkov@yandex.ru

Faculty of Biology

Bulgaria, 4000 Plovdiv

A. Yu. Vasil’kov

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: alexandervasilkov@yandex.ru
Russian Federation, 119334 Moscow

References

  1. Mioc A., Mioc M., Ghiulai R., Voicu M., Racoviceanu R., Trandafirescu C., Dehelean C., Coricovac D., Soica C. // Curr. Med. Chem. 2019. V. 26. № 35. P. 6493–6513. https://doi .org/10.2174/0929867326666190506123721
  2. Riley R.S., Day E.S. // Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017. V. 9. № 4. P. e1449. https://doi .org/10.1002/wnan.1449
  3. Penders J., Stolzoff M., Hickey D.J., Andersson M., Webster T.J. // Int. J. Nanomedicine. 2017. V. 12. P. 2457–2468. https://doi .org/10.2147/IJN.S124442
  4. Zhang J., Mou L., Jiang X. // Chem. Sci. 2020. V. 11. № 4. P. 923–936. https://doi .org/10.1039/C9SC06497D
  5. Vigderman L., Zubarev E.R. // Adv. Drug Deliv. Rev. 2013. V. 65. № 5. P. 663–676. https://doi .org/10.1016/j.addr.2012.05.004
  6. Siddique S., Chow J.C.L. // Appl. Sci. 2020. V. 10. № 11. P. 3824–3844. https://doi .org/10.3390/app10113824
  7. Voronova A.A., Naumkin A.V., Vasil’kov A.Yu. // INEOS OPEN. 2022. V. 5. № 3. P. 79–84. https://doi .org/10.32931/io2215a
  8. Wang P., Wang X., Wang L., Hou X., Liu W., Chen C. // Sci. Technol. Adv. Mater. 2015. V. 16. № 3. P. 034610. https://doi .org/10.1088/1468-6996/16/3/034610
  9. Srijampa S., Buddhisa S., Ngernpimai S., Leelayuwat C., Proungvitaya S., Chompoosor A., Tippayawat P. // Bioconjugate Chem. 2020. V. 31. № 4. P. 1133–1143. https://doi .org/10.1021/acs.bioconjchem.9b00847
  10. Schaeublin N.M., Braydich-Stolle L.K., Schrand A.M., Miller J.M., Hutchison J., Schlager J.J., Hussain, S.M. // Nanoscale. 2011. V. 3. № 2. P. 410–420. https://doi .org/10.1039/C0NR00478B
  11. Zhang R., Kiessling F., Lammers T., Pallares R.M. // Drug Deliv. Transl. Res. 2023. V. 13. № 2. P. 378–385. https://doi .org/10.1007/s13346-022-01232-4
  12. Vasil’kov A., Tseomashko N., Tretyakova A., Abidova A., Butenko I., Pereyaslavtsev A., Arkharova N., Volkov V., Shtykova E. // Coatings. 2023. V. 13. № 8. P. 1315. https://doi .org/10.3390/coatings13081315
  13. Rubina M.S., Pigaleva M.A., Butenko I.E., Budnikov A.V., Naumkin A.V., Gromovykh T.I., Lutsenko S.V., Vasil’kov A.Yu. // Dokl. Phys. Chem. 2019. V. 488. P. 146–150. https://doi .org/10.1134/S0012501619100026
  14. Vasil’kov A., Migulin D., Naumkin A., Volkov I., Butenko I., Golub A., Sadykova V., Muzafarov A. // Pharmaceutics. 2023. V. 15. № 3. P. 809. https://doi .org/10.3390/pharmaceutics15030809
  15. Vasil’kov A., Voronova A., Batsalova T., Moten D., Naumkin A., Shtykova E., Volkov V., Teneva I., Dzhambazov B. // Materials. 2023. V. 16. № 8. P. 3238. https://doi .org/10.3390/ma16083238
  16. Davis S.C., Klabunde K.J. // J. Am. Chem. Soc. 1978. V. 100. № 18. P. 5973–5974. https://doi .org/10.1021/Ja00486A076
  17. Davis S.C., Severson S.J., Klabunde K.J. //J. Am. Chem. Soc. 1981. V. 103. № 11. P 3024–3029. https://doi .org/10.1021/Ja00401A019.
  18. Beamson G., Briggs D. High resolution XPS of Organic Polymers. Chichester, Wiley, 1992. 295 p.
  19. Casaletto M.P., Longo A., Martorana A., Prestianni A., Venezia A.M. // Surf. Interface Anal. 2006. V. 38. № 4. P. 215–218. https://doi .org/10.1002/sia.2180
  20. Pireaux J.J., Chtaïb M., Delrue J.P., Thiry P.A., Liehr M., Caudano R. // Surf. Sci. 1984. V. 1. № 141. P. 211–220. https://doi .org/10.1016/0039-6028(84)90206-1
  21. Pireaux J.J., Liehr M., Thiry P.A., Delrue J.P., Caudano R. // Surf. Sci. 1984. V. 1. № 141. P. 221–232. https://doi .org/10.1016/0039-6028(84)90207-3
  22. Peters S., Peredkov S., Neeb M., Eberhardt W., Al-Hada M. // Surf. Sci. 2013. V. 608. P. 129–134. https://doi .org/10.1016/j.susc.2012.09.024
  23. Koslowski B., Boyen H.G., Wilderotter C., Kästle G., Ziemann P., Wahrenberg R., Oelhafen P. // Surf. Sci. 2001. V. 475. №1–3. P. 1–10. https://doi .org/10.1016/S0039-6028(00)00986-9
  24. Tsai H., Hu E., Perng K., Chen M., Wu J.C., Chang Y.S. // Surf. Sci. 2003. V. 537. № 1–3. P. L447–L450. https://doi .org/10.1016/S0039-6028(03)00640-X
  25. Xiong P., Huang X., Ye N., Lu Q., Zhang G., Peng S., Wang H., Liu Y. // Adv. Sci. 2022. V. 9. № 16. P. 2106049. https://doi .org/10.1002/advs.202106049
  26. Repetto G., Del Peso A., Zurita J.L. // Nat. Protoc. 2008. V. 3. № 7. P. 1125–1131. https://doi .org/10.1038/nprot.2008.75

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrographs of the AuIs sample: high-resolution TEM (a), high-resolution electronic diffraction pattern (b) and SEM (c).

Download (411KB)
3. Fig. 2. SEM image of the morphology of AuAc (a) nanoparticles and their elemental representations: C(b), O(c) and Au (d).

Download (1MB)
4. Fig. 3. Energy dispersive X-ray spectrum of the AiAs sample: C, 56.6 at. %; Oh, 43.3 at. %; Au, 0.1 at. %.

Download (113KB)
5. Fig. 4. Photoelectron spectra C 1s of AuIs (a), AuAc (b), AuTol (c) and Au 4f samples of all studied samples (d).

Download (750KB)
6. Fig. 5. Evaluation of the cytotoxicity of gold nanoparticles in vitro depending on the incubation time. Inhibition of cellular metabolic activity determined by the MTT test with cells A549 (a), FL (c), HeLa (e) and HT-29 (g). The results of the NK test for cells A549 (b), FL (d), HeLa (e) and HT-29 (h). Cells were cultured in a medium containing 200 micrograms ml–1 AuIs, AuAc or AuTol for 24, 48, 72, 96 and 120 hours. All samples were analyzed three times.

Download (854KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies