BAROCHROMISM – A NEW CHROMOGENIC EFFECT IN A SERIES OF BENZOTHIAZOLE SPIROPYRANES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The chromogenic effect in molecular systems capable of existing in two isomeric forms, caused by the inversion of the thermodynamic stability of isomers during the transition from the condensed state to the gas phase at low residual pressure and defined as barochromism, was discovered in a series of benzothiazole spiropyrans. This, along with what was described earlier for indoline spiropyrans, allows us to assume the universal nature of the discovered phenomenon.

About the authors

A. V Metelitsa

Institute of Physical and Organic Chemistry, Southern Federal University

Email: avmetelitsa@sfedu.ru
344090 Rostov-on-Don, Russian Federation

A. V Chernyshev

Institute of Physical and Organic Chemistry, Southern Federal University

344090 Rostov-on-Don, Russian Federation

I. V Dorogan

Institute of Physical and Organic Chemistry, Southern Federal University

344090 Rostov-on-Don, Russian Federation

E. V Solov'eva

Institute of Physical and Organic Chemistry, Southern Federal University

344090 Rostov-on-Don, Russian Federation

Yu. S Reutova

Institute of Physical and Organic Chemistry, Southern Federal University

344090 Rostov-on-Don, Russian Federation

References

  1. Photochromism. Molecules and systems. Dürr H., Bouas-Laurent H. (eds.). Amsterdam: Elsevier, 1990. 1044 p.
  2. Organic photochromic and thermochromic compounds. Crano J.C., Guglielmetti R. (eds.). New York: Kluwer Academic Publishers, 2002. V. 1. 378 p.
  3. Organic photochromic and thermochromic compounds. Crano J.C., Guglielmetti R. (eds.). New York: Kluwer Academic Publishers, 2002. V. 2. 473 p.
  4. Day J.H. // Chem. Rev. 1963. V. 63. P. 65–80. https://doi.org/10.1021/cr60221a005
  5. El-Ayaan U., Murata F., Fukuda Y. // Monatsh. Chem. 2001. V. 132. P. 1279–1294. https://doi.org/10.1007/s007060170018
  6. Seeboth A., Lötzsch D., Ruhmann R., Muehling O. // Chem. Rev. 2014. V. 114. № 5. P. 3037–3068. https://doi.org/10.1021/cr400462e
  7. Reichardt C. // Chem. Soc. Rev. 1992. V. 21. P. 147–153. https://doi.org/10.1039/cs9922100147
  8. Machado V.G., Stock R.I., Reichardt C. // Chem. Rev. 2014. V. 114. № 20. P. 10429–10475. https://doi.org/10.1021/cr5001157
  9. Couchet C., Chernyshev A.V., Metelitsa A.V., Micheau J.C. New trends in spiro-compounds photochromic metals sensors: Quantitative aspects. In: Photon-working switches. Yokoyama Y., Nakatani K. (eds.). Springer, Tokyo, 2017. pp. 3–35. https://doi.org/10.1007/978-4-431-56544-4_1
  10. Sahoo P.R., Prakash K., Kumar S. // Coord. Chem. Rev. 2018. V. 357. P. 18–49. https://doi.org/10.1016/j.ccr.2017.11.010
  11. Feuerstein T.J., Müller R., Barner-Kowolik C., Roesky P.W. // Inorg. Chem. 2019. V. 58. P. 15479–15486. https://doi.org/10.1021/acs.inorgehem.9b02547
  12. Guo K., Chen Y. // Mater. Chem. Phys. 2013. V. 137. P. 1062–1066. https://doi.org/10.1016/j.matchemphys.2012.11.028
  13. Gentili P. L., Nocchetti M., Milanese C., Favaro G. // New J. Chem. 2004. V. 28. P. 379–386. https://doi.org/10.1039/b313637j
  14. Pugachev A.D., Mukhanov E.L., Ozhogin I.V., Kozlenko A.S., Metelitsa A.V., Lukyanov B.S. // Chem. Heterocyc. Comp. 2021. V. 57. № 2. P. 122–130. https://doi.org/10.1007/s10593-021-02881-y
  15. Lin Y., Jiao C., Qi Y., Zou J., Xu D., Luan S. // ACS Appl. Mater. Interfaces. 2024. V. 16. P. 43064–43071. https://doi.org/10.1021/acsami.4c10488
  16. Berkovic G., Krongauz V., Weiss V. // Chem. Rev. 2000. V. 100. № 5. P. 1741–1754. https://doi.org/10.1021/cr9800715
  17. Liu Q., Jiang K., Wen Y., Wang J., Luo J., Song Y. // Appl. Phys. Letters. 2010. V. 97. № 25. P. 253304. https://doi.org/10.1063/1.3529453
  18. Seok W.C., Son S.H., An T.K., Kim S.H., Lee S.W. // Electron. Mater. Lett. 2016. V. 12. № 4. P. 537–544. https://doi.org/10.1007/s13391-016-4019-7
  19. McDonagh C., Burke C.S., MacCralth B.D. // Chem. Rev. 2008. V. 108. № 2. P. 400–422. https://doi.org/10.1021/cr068102g
  20. Steinegger A., Wolfbeis O.S., Borisov S.M. // Chem. Rev. 2020. V. 120. P. 12357–12489. https://doi.org/10.1021/acs.chemrev.0c00451
  21. Avella-Oliver M., Morais S., Puchades R., Maquieira A. // TrAC, Trends Anal. Chem. 2016. V. 79. P. 37–45. http://dx.doi.org/10.1016/j.trac.2015.11.021
  22. James M.L., Gambhir S.S. // Physiol. Rev. 2012. V. 92. P. 897–965. https://doi.org/10.1152/physrev.00049.2010
  23. Sedgwick A.C., Brewster J.T., Harvey P., Iovan D.A., Smith G., He X.-P., Tian H., Sessler J.L., James T.D. // Chem. Soc. Rev. 2020. V. 49. P. 2886–2915. https://doi.org/10.1039/C8CS00986J
  24. Raymo F.M., Giordani S. // J. Am. Chem. Soc. 2002. V. 124. P. 2004–2007. https://doi.org/10.1021/ja016920e
  25. Feringa B.L. // J. Org. Chem. 2007. V. 72. № 18. P. 6635–6652. https://doi.org/10.1021/jo070394d
  26. Klajn R. // Chem. Soc. Rev. 2014. V. 43. P. 148–184. https://doi.org/10.1039/C3CS60181A
  27. Metelitsa A.V., Chernyshev A.V., Voloshin N.A., Solov'eva E.V., Dorogan I.V. // J. Photochem. Photobiol. A: Chem. 2022. V. 430. 113982. https://doi.org/10.1016/j.jphotochem.2022.113982
  28. Metelitsa A.V., Chernyshev A.V., Voloshin N.A., Solov’eva E. V., Reutova Y. S., Rostovtseva I. A., Dorogan I. V. // Dyes Pigm. 2024. V. 228. 112200. https://doi.org/10.1016/j.dyepig.2024.112200
  29. Deniel M. H., Lavabre D. and Micheau J. C. Photokinetics under continuous irradiation. In: Organic photochromic and thermochromic compounds. V. 2. Crano J.C., Guglielmetti R.J. (eds.). New York: Plenum Press, 1999. P. 167–210. https://link.springer.com/content/pdf/10.1007/b115590.pdf
  30. Frisch J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision E.01. Wallingford CT: Gaussian, Inc. 2013.
  31. Barone V., Cossi M., Tomasi J. // J. Chem. Phys. 1997. V. 107. P. 3210–3221. https://doi.org/10.1063/1.474671
  32. Cancès E., Mennucci B., Tomasi J. // J. Chem. Phys. 1997. V. 107. P. 3032–3041. https://doi.org/10.1063/1.474659
  33. Samat A.M., Guglielmetti R.J., Martin G.J. // Org. Magn. Reson. 1976. V. 8. P. 62–73. https://doi.org/10.1002/mrc.1270080203

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).