4-AZIDO-3-AMINO-1,2,5-OXADIAZOLE: SYNTHESIS, STRUCTURAL CHARACTERIZATION AND PHYSICO-CHEMICAL PROPERTIES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The synthesis verification of 3-amino-4-azido-1,2,5-oxadiazole and its structural characterization (IR, NMR, X-Ray, elemental analysis) are reported. Its thermal behavior (TG-DSC), standard enthalpy of formation, sensitivity to mechanical stimuli, detonation parameters were studied. Our study unveils wide application perspectives of 3-amino-4-azidofurazan as a precursor to novel energetic materials for future insights and an eco-friendly primary explosive.

Palavras-chave

Sobre autores

S. Balabanova

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

A. Voronin

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,

Autor responsável pela correspondência
Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

I. Fedyanin

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

A. Pivkina

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

D. Meerov

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

T. Kon’kova

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

Yu. Matyushin

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

Yu. Strelenko

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

L. Fershtat

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

Bibliografia

  1. Batog L.V., Konstantinova L.S., Rozhkov V.Y., Strelenko Y.A., Lebedev O.V., Khmel’nitskii L.I. // Chem. Heterocycl. Compd. 2000. V. 36. № 1. P. 91–100. https://doi.org/10.1007/BF02256852
  2. Batog L.V., Rozhkov V.Y., Strelenko Y.A., Lebedev O.V., Khmel’nitskii L.I. // Chem. Heterocycl. Compd. 2000. V. 36. № 3. P. 343–345. https://doi.org/10.1007/BF02256874
  3. Khisamutdinov G.K., Mrakhutzina T.A., Gabdullin R.M., Abdrakhmanov I.S., Smirnov S.P., Ugrak B.I. // Russ. Chem. Bull. 1995. V. 44. № 7. P. 1269–1271. https://doi.org/10.1007/BF00700901
  4. Zelenov V.P., Lobanova A.A., Lyukshenko N.I., Sysolyatin S.V., Kalashnikov A.I. // Russ. Chem. Bull. 2008. V. 57. № 7. P. 1384–1389. https://doi.org/10.1007/s11172-008-0180-y
  5. Tselinskii I.V., Mel’nikova S.F., Vergizov S.N. // J. Org. Chem. USSR. 1981. V. 17. № 5. P. 994–995.
  6. Sheremetev A.B., Lyalin B.V., Kozeev A.M., Palysaeva N.V., Struchkova M.I., Suponitsky K.Y. // RSC Advances. 2015. V. 5. № 47. P. 37617–37625. https://doi.org/10.1039/C5RA05726D
  7. Churakov A.M., Ioffe S.L., Strelenko Y.A., Tartakovsky V.A. // Tetrahedron lett. 1996. V. 37. № 47. P. 8577–8580. https://doi.org/10.1016/0040-4039(96)01992-2
  8. Voronin A.A., Balabanova S.P., Fedyanin I.V., Churakov A.M., Pivkina A.N., Strelenko Yu. A., Klenov M.S., Tartakovsky V.A. // Molecules. 2022. V. 27. № 19. P. 6287. https://doi.org/10.3390/molecules27196287
  9. Churakov A.M., Ioffe S.L., Kuz’min V.S., Strelenko Y.A., Struchkov Yu.T., Tartakovskii V.A. // Chem. Heterocycl. Compd. 1988. V. 24. № 12. P. 1378–1381. https://doi.org/10.1007/BF00486683
  10. Sheremetev A.B., Palysaeva N.V., Struchkova M.I., Suponitsky K.Y. // Mendeleev Commun. 2012. V. 22. № 6. P. 302–304. https://doi.org/10.1016/j.mencom.2012.11.007
  11. Sinditskii V.P., Burzhava A.V., Usuntsinova A.V., Egorshev V.Y., Palysaeva N.V., Suponitsky K.Y., Ananiev I.V., Sheremetev A.B. // Combust. Flame. 2020. V. 213. P. 343–356. https://doi.org/10.1016/j.combustflame.2019.12.006
  12. Strizhenko K.V., Smirnova A.D., Filatov S.A., Sindi-tskii V.P., Stash, A.I., Suponitsky K.Y., Monogarov K.A., Kiselev V.G., Sheremetev A.B. // Molecules. 2022. V. 27. 8443. https://doi.org/10.3390/molecules27238443
  13. Gunasekaran A., Trudell M.L., Boyer J.H. // Heteroat. Chem. 1994. V. 5. № 5–6. P. 441–446. https://doi.org/10.1002/hc.520050505
  14. Rakitin O.A., Zalesova O.A., Kulikov A.S., Makhova N.N., Godovikova T.I., Khmel’nitskii L.I. // Russ. Chem. Bull. 1993. V. 42. № 11. P. 1865–1870. https://doi.org/10.1007/BF00699005
  15. Fierz-David H.E., Blangey L., Vittum P. Fundamental processes of dye chemistry. Interscience Publishers Ltd., London, 1949. P. 247.
  16. Tselinskii I.V., Mel’nikova S.F., Vergizov S.N. // Chem. Heterocycl. Compds. 1981. V. 17. № 3. P. 228–232. https://doi.org/10.1007/BF00505982
  17. Trifonov R.E., Gaenko A.V., Vergizov S.N., Shcherbi-nin M.B., Ostrovskii V.A. // Croat. Chem. Acta. 2003. V. 76. № 2. P. 177–182.
  18. Bader R.F.W., Larouche A., Gatti C., Carroll M.T., MacDougall P.J., Wiberg K.B. // J. Chem. Phys. 1987. V. 87. № 2. P. 1142–1152. https://doi.org/10.1063/1.453294
  19. Smith C.J., Smith C.D., Nikbin N., Ley S.V., Baxen-dale I.R. // Org. Biomol. Chem. 2011. V. 9. № 6. P. 1927–1937. https://doi.org/10.1039/C0OB00813C
  20. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Cryst. 2016. V. B72. № 2. P. 171–179. https://doi.org/10.1107/S2052520616003954
  21. Bruno I.J., Cole J.C., Kessler M., Luo J., Motherwell W.D.S., Purkis L.H., Smith B.R., Taylor R., Cooper R.I., Har-ris S.E., Orpen A.G. // J. Chem. Inf. Comput. Sci. 2004. V. 44. № 6. P. 2133–2144. https://doi.org/10.1021/ci049780b
  22. Muravyev N.V., Monogarov K.A., Melnikov I.N., Pivki-na A.N., Kiselev V.G. // Phys. Chem. Chem. Phys. 2021. V. 23. № 29. P. 15522–15542. https://doi.org/10.1039/D1CP02201F
  23. Gorn M.V., Monogarov K.A., Dalinger I.L., Melnikov I.N., Kiselev V.G., Muravyev N.V. // Thermochim. Acta. 2020. V. 690. P. 178697. https://doi.org/10.1016/j.tca.2020.178697
  24. Muravyev N.V., Meerov D.B., Monogarov K.A., Melni-kov I.N., Kosareva E.K., Fershtat L.L., Sheremetev A.B., Dalinger I.L., Fomenkov I.V., Pivkina A.N. // Chem. Eng. J. 2021. V. 421. P. 129804. https://doi.org/10.1016/j.cej.2021.129804
  25. Matyáš R., Pachman J. Primary explosives. Springer Berlin, Heidelberg, 2013. 338 p. https://doi.org/10.1007/978-3-642-28436-6
  26. Muravyev N.V., Wozniak D., Piercey D. // J. Mater. Chem. A. 2022. V 10. № 20. P. 11054–11073. https://doi.org/10.1039/D2TA01339H
  27. Zhang J., Shreeve J.N. // J. Am. Chem. Soc. 2014. V. 136. № 11. P. 4437–4445. https://doi.org/10.1021/ja501176q
  28. Joo Y.H., Jean’ne M.S. // Chem. Commun. 2010. V 46. № 1. P. 142–144.
  29. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3–8. https://doi.org/10.1107/S2053273314026370
  30. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
  31. Hansen N.K., Coppens P. // Acta Cryst. 1978. V. A34. № 6. P. 909–921. https://doi.org/10.1107/S0567739478001886
  32. Koritsanszky T., Macchi P., Gatti C., Farrugia L.J., Mallinson P.R., Volkov A., Richter T. // XD2006 – A Computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors. 2006.
  33. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. № 1. P. 210–218. https://doi.org/10.1107/S1600576718000183
  34. Peintinger M.F., Oliveira D.V., Bredow T. // J. Comput. Chem. 2013. V. 34. № 6. P. 451–459. https://doi.org/10.1002/jcc.23153
  35. Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L. // WIREs Comput. Mol. Sci. 2018. V. 8. № 4. P. 1360. https://doi.org/10.1002/wcms.1360
  36. Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. № 4. P. 553–566. https://doi.org/10.1080/00268977000101561
  37. Gatti C., Saunders V.R., Roetti C. // J. Chem. Phys. 1994. V. 101. № 12. P. 10686. https://doi.org/10.1063/1.467882
  38. STANAG 4489, Explosives, Impact Sensitivity Tests, NATO, Brussels, 1999.
  39. STANAG 4487, Explosives, Friction Sensitivity Tests, NATO, Brussels, 2002.
  40. Inozemtsev Ya.O., Vorobjov A.B., Inozemtsev A.V., Ma-tyushin Yu.N. // Gorenie i vzryv. 2014. V. 7. P. 260–270. (in Russian)
  41. Kon’kova T.S., Matyushin Yu.N., Miroshnichenko E.A., Vorob’ev A.B. // Russ. Chem. Bull. 2009. V. 58. P. 2020–2027. https://doi.org/10.1007/s11172-009-0276-z

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (31KB)
3.

Baixar (104KB)
4.

Baixar (78KB)
5.

Baixar (885KB)
6.

Baixar (101KB)
7.

Baixar (108KB)

Declaração de direitos autorais © С.П. Балабанова, А.А. Воронин, И.В. Федянин, А.Н. Пивкина, Д.Б. Мееров, Т.С. Конькова, Ю.Н. Матюшин, Ю.А. Стреленко, Л.Л. Ферштат, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies