NONEQUILIBRIUM NUCLEAR SPIN STATES OF ETHYLENE DURING ACETYLENE HYDROGENATION WITH PARAHYDROGEN OVER IMMOBILIZED IRIDIUM COMPLEXES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work rhodium and iridium immobilized complexes were prepared and characterized by X-ray photoelectron spectroscopy. For the first time, hyperpolarized 13C-ethylene was detected directly in the gas phase during acetylene hydrogenation with parahydrogen on immobilized iridium complexes. The line shape of polarized 13С‑ethylene unambiguously indicates that the hydrogen addition to the triple bond of acetylene on immobilized iridium complexes proceeds via syn-addition. It has been shown that the selective acetylene hydrogenation with parahydrogen over immobilized iridium complexes is an effective chemical method for enriching the nuclear spin isomers of ethylene.

About the authors

I. V. Skovpin

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

S. V. Sviyazov

International Tomography Center, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk; Russian Federation, 630090, Novosibirsk

D. B. Burueva

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

L. M. Kovtunova

International Tomography Center, Siberian Branch of the Russian Academy of Sciences; Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk; Russian Federation, 630090, Novosibirsk

A. V. Nartova

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

R. I. Kvon

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

V. I. Bukhtiyarov

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

I. V. Koptyug

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

References

  1. Bos A.N.R., Westerterp K.R. // Chem. Eng. Process. Process Intensif. 1993. V. 32. P. 1–7. https://doi.org/10.1016/0255-2701(93)87001-B
  2. Zhivonitko V.V., Kovtunov K.V., Chapovsky P.L., Kop-tyug I.V. // Angew. Chem. Int. Ed. 2013. V. 52. P. 13251–13255. https://doi.org/10.1002/anie.201307389
  3. Chapovsky P.L., Zhivonitko V.V., Koptyug I.V. // J. Phys. Chem. A. 2013. V. 117. P. 9673–9683. https://doi.org/10.1021/jp312322f
  4. Гельмуханов Ф.Х., Шалагин А.М. // Письма в ЖЭТФ. 1979. V. 29. P. 773–776.
  5. Sun Z.-D., Takagi K., Matsushima F. // Science. 2005. V. 310. P. 1938–1941. https://doi.org/10.1126/science.1120037
  6. Eills J., Budker D., Cavagnero S., Chekmenev E.Y., Elliott S.J., Jannin S., Lesage A., Matysik J., Meersmann T., Prisner T., Reimer J.A., Yang H., Koptyug I.V. // Chem. Rev. 2023. V. 123. P. 1417–1551. https://doi.org/10.1021/acs.chemrev.2c00534
  7. Ковтунов К.В., Буруева Д.Б., Свиязов С.В., Сальников О.Г., Гудсон Б.М., Чекменев Э.Ю., Коптюг И.В. // Изв. АН. Сер. Хим. 2021. V. 12. P. 2382–2389.
  8. Покочуева Е.В., Святова А.И., Буруева Д.Б., Коптюг И.В. // Изв. АН. Сер. Хим. 2023. V. 1. P. 1–19.
  9. Duckett S.B., Mewis R.E. // Acc. Chem. Res. 2012. V. 45 P. 1247–1257. https://doi.org/10.1021/ar2003094
  10. Koptyug I.V., Kovtunov K.V., Burt S.R., Anwar M.S., Hilty C., Han S.-I., Pines A., Sagdeev R.Z. // J. Am. Chem. Soc. 2007. V. 129. P. 5580–5586. https://doi.org/10.1021/ja068653o
  11. Kovtunov K.V., Beck I.E., Bukhtiyarov V.I., Koptyug I.V. // Angew. Chem. Int. Ed. 2008. V. 47. P. 1492–1495. https://doi.org/10.1002/anie.200704881
  12. Kovtunov K.V., Zhivonitko V.V., Skovpin I.V., Barskiy D.A., Koptyug I.V. // Top. Curr. Chem. 2013. V. 338. P. 123–180. https://doi.org/10.1007/128_2012_371
  13. Pokochueva E.V., Burueva D.B., Kovtunova L.M., Bukhtiyarov A.V., Gladky A.Yu., Kovtunov K.V., Koptyug I.V., Bukhtiyarov V.I. // Faraday Discuss. 2021. V. 229. P. 161–175. https://doi.org/10.1039/C9FD00138G
  14. Burueva D.B., Kovtunov K.V., Bukhtiyarov A.V., Barskiy D.A., Prosvirin I.P., Mashkovsky I.S., Baeva G.N., Bukhtiyarov V.I., Stakheev A.Yu., Koptyug I.V. // Chem. Eur. J. 2018. V. 24. P. 2547–2553. https://doi.org/10.1002/chem.201705644
  15. Zhao E.W., Maligal-Ganesh R., Xiao C., Goh T.-W., Qi Z., Pei Y., Hagelin-Weaver H.E., Huang W., Bowers C.R. // Angew. Chem. Int. Ed. 2017. V. 56. P. 3925–3929. https://doi.org/10.1002/anie.201701314
  16. Corma A., Salnikov O.G., Barskiy D.A., Kovtunov K.V., Koptyug I.V. // Chem. Eur. J. 2015. V. 21. P. 7012–7015. https://doi.org/10.1002/chem.201406664
  17. Skovpin I.V., Zhivonitko V.V., Koptyug I.V. // Appl. Magn. Reson. 2011. V. 41. P. 393–410. https://doi.org/10.1007/s00723-011-0255-z
  18. Skovpin I.V., Zhivonitko V.V., Kaptein R., Koptyug I.V. // Appl. Magn. Reson. 2013. V. 44. P. 289–300. https://doi.org/10.1007/s00723-012-0419-5
  19. Skovpin I.V., Zhivonitko V.V., Prosvirin I.P., Khabibulin D.F., Koptyug I.V. // Z. Phys. Chem. 2017. V. 231. P. 575–592. https://doi.org/10.1515/zpch-2016-0824
  20. Skovpin I.V., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Catal. Sci. Technol. 2022. V. 12. P. 3247–3253. https://doi.org/10.1039/D1CY02258J
  21. Crabtree R.H., Morris G.E. // J. Organomet. Chem. 1977. V. 135. P. 395–403. https://doi.org/10.1016/S0022-328X(00)88091-2
  22. Yamada T., Matsuo T., Ogawa A., Ichikawa T., Kobayashi Y., Masuda H., Miyamoto R., Bai H., Meguro K., Sawama Y., Monguchi Y., Sajiki H. // Org. Process Res. Dev. 2018. V. 23. P. 462–469. https://doi.org/10.1021/acs.oprd.8b00291
  23. Huang L., Ang T.P., Wang Z., Tan J., Chen J., Wong P.K. // Inorg. Chem. 2011. V. 50. P. 2094–2111. https://doi.org/10.1021/ic100824e
  24. Crudden C.M., Sateesh M., Lewis R. // J. Am. Chem. Soc. 2005. V. 127. P. 10045–10050. https://doi.org/10.1021/ja0430954
  25. Holsboer F., Beck W., Bartunik H.D. // J. Chem. Soc., Dalt. Trans. 1973. P. 1828–1829. https://doi.org/10.1039/DT9730001828
  26. Fernando N.K., Cairns A.B., Murray C.A., Thompson A.L., Dickerson J.L., Garman E.F., Ahmed N., Ratcliff L.E., Regoutz A. // J. Phys. Chem. A. 2021. V. 125. P. 7473–7488. https://doi.org/10.1021/acs.jpca.1c05759
  27. Bowers C.R., Weitekamp D.P. // J. Am. Chem. Soc. 1987. V. 109. P. 5541–5542. https://doi.org/10.1021/ja00252a049
  28. Salnikov O.G., Kovtunov K.V., Barskiy D.A., Khudorozhkov A.K., Inozemtseva E.A., Prosvirin I.P., Bukhtiya-rov V.I., Koptyug I.V. // ACS Catal. 2014. V. 4. P. 2022–2028. https://doi.org/10.1021/cs500426a
  29. Giordano G., Crabtree R.H., Heintz R.M., Forster D., Morris D.E. Di-μ-chloro-bis(η4-1,5-cyclooctadlene) dirhodium (I). In: Inorganic syntheses. V. 19. Shri-ver D.F. (Ed.). John Wiley & Sons, 1979. P. 218–220. https://doi.org/10.1002/9780470132500.ch50
  30. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray photoelectron spectroscopy. 2nd edn. Perkin-Elmer Corp., Eden Priarie, MN, USA, 1992.
  31. XPSPEAK, свободно распространяемое программное обеспечение для анализа спектров РФЭС // http://xpspeak.software.informer.com/4.1/ (ссылка активна на 27.12.2022).
  32. Квон Р.И., Нартова АВ., Ковтунова Л.М., Бухтияров В.И. // Журн. структ. хим. 2023. V. 64. P. 106142. https://doi.org/10.26902/JSC_id106142

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (49KB)
3.

Download (343KB)
4.

Download (130KB)
5.

Download (284KB)

Copyright (c) 2023 И.В. Сковпин, С.В. Свиязов, Д.Б. Буруева, Л.М. Ковтунова, А.В. Нартова, Р.И. Квон, В.И. Бухтияров, И.В. Коптюг

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».