LOW-TEMPERATURE deN2O CATALYST BASED ON Co3O4 FOR A SINGLE-REACTOR SCHEME FOR THE REMOVAL OF NITROGEN OXIDES IN NITRIC ACID PRODUCTION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Cesium promoted cobalt spinel is promising as a catalyst for the low-temperature decomposition of nitrous oxide for use in the second stage of a single-reactor scheme for complex purification from nitrogen oxides. In this work, the influence of the conditions for the preparation of massive granular and block catalysts based on Co3O4 by extrusion molding has been studied.

Sobre autores

L. Isupova

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: isupova@catalysis.ru
Russian, 630090, Novosibirsk

Yu. Ivanova

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: isupova@catalysis.ru
Russian, 630090, Novosibirsk

Bibliografia

  1. Tian H., Chen G., Lu C., Xu X., Ren W., Zhang B., Banger K., Tao B., Pan S., Liu M., Zhang C., Bruhwiler L., Wofsy S. // Ecosystem Health and Sustainability. 2014. V. 1. № 4. P. 1. https://doi.org/10.1890/EHS14-0015.1
  2. Tuckett R. Greenhouse Gases. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier, 2018. https://doi.org/10.1016/B978-0-12-409547-2.14031-4
  3. Chumachenko V.A., Isupova L.A., Ivanova Yu.A., Ovchinnikova E.V., Reshetnikov S.I., Noskov A.S. // Chemistry for Sustainable Development. 2020. V. 28. № 2. P. 210–219. https://doi.org/10.15372/KhUR2020221
  4. Kapteijn F., Rodriguez-Mirasol J., Moulijn J.A. // Appl. Catal. B. 1996. V. 9. P. 25–64. https://doi.org/10.1016/0926-3373(96)90072-7
  5. Pérez-Ramirez J., Kapteijn F., Schöffel K., Moulijn J.A. // Appl. Catal. 2003. V. 44. P. 117–151. https://doi.org/10.1016/S0926-3373(03)00026-2
  6. Верниковская Н.В., Шеболтасов А.Г., Чумаченко В.А. Каталитическая очистка отходящих газов от оксидов азота (NOx и N2O) в производстве неконцентрированной азотной кислоты. Новосибирск: Изд-во НГТУ, 2021. 95 с.
  7. Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе городских и сельских поселений. Гигиенические нормативы ГН 2.1.6.3492-17.
  8. Бруштейн Е.А., Ванчурин В.И., Ященко А.В. // Катализ в промышленности. 2012. Т. 4. С. 7.
  9. Groves M.C.E., Sasonow A. // J. Integr. Environ. Sci. 2010. V. 7. № S1. P. 211–222. https://doi.org/10.1080/19438151003621334
  10. Hu X., Wang Y., Wu R., Zhao Y. // Appl. Surf. Sci. 2021. V. 538. P. 148157. https://doi.org/10.1016/j.apsusc.2020.148157
  11. Grzybek G., Grybos J., Indyka P., Janas J., Ciura K., Leszczynsk B., Zasada F., Kotarba A., Sojka Z. // Appl. Catal. B. 2021. V. 297. P. 120435. https://doi.org/10.1016/j.apcatb.2021.120435
  12. Hu X., Wang Y., Wu R., Zhao Y. // Mol. Catal. 2021. V. 509. P. 111656. https://doi.org/10.1016/j.mcat.2021.111656
  13. Inger M., Moszowski B., Ruszak M., Rajewski J., Wilk M. // Catalysts. 2020. V. 10. P. 987. https://doi.org/10.3390/catal10090987
  14. Tian-qi Z., Qiang G., Wei-ping L., Xiu-feng X. // J. Fuel Chem Technol. 2019. V. 47. №9. P. 1120–1128. https://doi.org/10.1016/S1872-5813(19)30046-5
  15. Wang Y., Zhou X., Wei X., Li X., Wu R., Hu X., Zhao Y. // Mol. Catal. 2021. V. 501. P. 111370. https://doi.org/10.1016/j.mcat.2020.111370
  16. Zhe D., Hai-jie Z., Yan-fei P., Xiu-feng X. // J. Fuel Chem. Technol. 2014. V. 42. № 2. P. 238–245. https://doi.org/10.1016/S1872-5813(14)60016-5
  17. Konsolakis M. // ACS Catal. 2015. V. 5. № 11. P. 6397–6421. https://doi.org/10.1021/acscatal.5b01605
  18. Stelmachowski P., Maniak G., Kaczmarczyk J., Zasada F., Piskorz W., Kotarba A., Sojka Z. // Appl. Catal. B. 2014. V. 146. P. 105–111. https://doi.org/10.1016/j.apcatb.2013.05.027
  19. Won-Hyun E., Muhammad A. // J. Nanosci. Nanotechnol. 2016. V. 16. № 5. P. 4647–4654. https://doi.org/10.1166/jnn.2016.11026
  20. Yu H., Tursun M., Wang X., Wu X. // Appl. Catal. B. 2016. V. 185. P. 110–118. https://doi.org/10.1016/j.apcatb.2015.12.011
  21. Zhang C., Zhang Z., Sui C., Yuan F., Niu X., Zhu Y. // ChemCatChem. 2016. V. 8. № 12. P. 1992–1992. https://doi.org/10.1002/cctc.201600683
  22. Chromcakova Z., Obalova L., Kovanda F., Legut D., Titov A., Ritz M., Fridrichova D., Michalik S., Kustrowski P., Jiratova K. // Catal. Today. 2015. V. 257. P. 18–25. https://doi.org/10.1016/j.cattod.2015.03.030
  23. Ivanova Y.A., Sutormina E.F., Isupova I.A., Vovk E.I. // Kinet. Catal. 2017. V. 58. № 6. P. 793. https://doi.org/10.1134/S002315841705007X
  24. Ivanova Y.A., Sutormina E.F., Isupova L.A., Rogov V.A. / Kinet. Catal. 2018. V. 59. № 3. P. 357. https://doi.org/10.1134/S0023158418030072
  25. Исупова Л.А., Иванова Ю.А. // Кинетика и катализ. 2019. Т. 60. № 6. С. 725–740. https://doi.org/10.1134/S0453881119060054
  26. Stelmachowski P., Maniak G., Kotarba A., Sojka Z. // Catal. Commun. 2009. V. 10. P. 1062–1065. https://doi.org/10.1016/j.catcom.2008.12.057
  27. Pasha N., Lingaiah N., Seshu Babu N., Siva Sankar Reddy P., Sai Prasad P.S. // Catal. Commun. 2008. V. 10. P. 132–136. https://doi.org/10.1016/j.catcom.2008.06.006
  28. Maniak G., Stelmachowski P., Kotarba A., Sojka Z., Rico-Pérez V., Bueno-López A. // Appl. Catal. B. 2013. V. 136–137. P. 302–307. https://doi.org/10.1016/j.apcatb.2013.01.068
  29. Ohnishi C., Asano K., Iwamoto S., Chikama K., Inoue M. // Catal. Today. 2007. V. 120. P. 145–150. https://doi.org/10.1016/j.cattod.2006.07.042
  30. Hai-peng W., Wen-jing L., Li G., Yan-fei P., Xiu-feng X. // J. Fuel Chem. Technol. 2011. V. 39. № 7. P. 550–555. https://doi.org/10.1016/S1872-5813(11)60034-0
  31. Grzybek G., Stelmachowski P., Gudyka S., Duch J., Ćmil K., Kotarba A., Sojka Z. // Appl. Catal. B. 2015. V. 168–169. P. 509–514. https://doi.org/10.1016/j.apcatb.2015.01.005
  32. Isupova L.A., Ivanova Y.A. // Russ. J. Phys. Chem. 2021. V. 95. № 3. P. 503–511. https://doi.org/10.31857/S0044453721030134
  33. Исупова Л.А. Исследование оксидных катализаторов глубокого окисления, полученных с использованием метода механохимической активации и склеивания: Дис. канд. хим. наук. Новосибирск, 1989. 201 с.
  34. Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. М.: Юрайт, 2014. 444 с.
  35. Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982. 632 с.
  36. Grzybek G., Wójcik S., Legutko P., J.Grybos, Indyka P., Leszczynsk B., Kotarba A., Sojka Z. // Appl. Catal. B. 2017. V. 205. P. 597–604. https://doi.org/10.1016/j.apcatb.2017.01.005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (585KB)
3.

Baixar (108KB)
4.

Baixar (124KB)
5.

Baixar (42KB)
6.

Baixar (66KB)
7.

Baixar (26KB)

Declaração de direitos autorais © Л.А. Исупова, Ю.А. Иванова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies