Диффузионно-пузырьковые мембраны: термодинамика и массоперенос. Обзор

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пузыри широко используются в современных технологиях от синтеза наноматериалов (ультразвуковая сонохимия и импульсная лазерная абляция в жидкостях) до солнечной геоинженерии (торможение глобального потепления) и биомедицины (доставка лекарств через гематоэнцефалический барьер). В последнее время в ИМЕТ РАН разрабатываются концептуально новые диффузионно-пузырьковые мембраны с комбинированным массопереносом и теоретически бесконечной селективностью, в которых пузыри выполняют функцию переносчиков кислорода. В данном обзоре проанализированы и обобщены экспериментальные и теоретические результаты исследования процессов массопереноса, нуклеации и динамики кислородных пузырей в инновационных диффузионно-пузырьковых мембранах со структурой ядро–оболочка, полученные за последнее пятилетие. Указаны направления дальнейших исследований. Отмечены перспективы использования диффузионно-пузырьковых мембран в сепараторах высокочистого кислорода.

Об авторах

В. В. Белоусов

Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук

Автор, ответственный за переписку.
Email: vbelousov@imet.ac.ru
Россия, 119334, Москва

Список литературы

  1. Gray H.B., Winkler J.R. // Acc. Chem. Res. 2018. V. 51. № 8. P. 1850–1857. https://doi.org/10.1021/acs.accounts.8b00245
  2. Nemitallah M.A., Rashwan S.S., Mansir I.B., Abdelha-fez A.A., Habib M.A. // Energy Fuels. 2018. V. 32. № 2. P. 979–1004. https://doi.org/10.1021/acs.energyfuels.7b03607
  3. Zhu X., Imtiaz Q., Donat F., Muller C.R., Li F. // Energy Environ. Sci. 2020. V. 13. P. 772–804. https://doi.org/10.1039/C9EE03793D
  4. Grainge C. // J. R. Soc. Med. 2004. V. 97. № 10. P. 489–493. https://doi.org/10.1177/0141076809701011
  5. Bergthorson J.M., Thomson M.J. // Renew. Sustain. Energy Rev. 2015. V. 42. P. 1393–1417. https://doi.org/10.1016/J.RSER.2014.10.034
  6. Fu Q., Kansha Y., Song C., Liu Y., Ishizuka M., Tsutsu-mi A. // Appl. Energy. 2016. V. 162. P. 1114–1121. https://doi.org/10.1016/j.apenergy.2015.03.039
  7. Cao Y., Swartz C.L.E., Flores-Cerrillo J., Ma J. // AIChE J. 2016. V. 62. № 5. P. 1602–1615. https://doi.org/10.1002/aic.15164
  8. Agrawal R. // End. Eng. Chem. Res. 1995. V. 34. P. 3947–3955. https://doi.org/10.1021/ie00038a034
  9. Hua X., Du G., Zhou X., Nawaz A., Hag I., Xu Y. // Biotech. Biofuels 2020. V. 13. № 13. P. 102. https://doi.org/10.1186/s13068-020-01741-9
  10. Huang X., Groves J.T. // Chem. Rev. 2018. V. 118. № 5. P. 2491–2553. https://doi.org/10.1021/acs.chemrev.7b00373
  11. Gavriilidis A., Constantinou A., Hellgardt K., Hii K.K., Hutchings G.J., Brett G.L., Kuhn S., Marsden S.P. // React. Chem. Eng. 2016. V. 1. № 6. P. 595–612. https://doi.org/10.1039/C6RE00155F
  12. Ghogare A.A., Greer A. // Chem. Rev. 2016. V. 116. № 17. P. 9994–10034. https://doi.org/10.1021/acs.chemrev.5b00726
  13. Roussakis E., Li Z., Nichols A.J., Evans C.L. // Angew. Chem. Int. Ed. 2015. V. 54. № 29. P. 8340–8362. https://doi.org/10.1002/anie.201410646
  14. Chen G., Feldhoff A., Weidenkaff A., Li C., Liu Sh., Zhu X., Sunarso J., Huang K., Wu X.-Y., Ghoniem A. F., Yang W., Xue J., Wang H., Shao Z., Duffy J. H., Brinkman K. S., Tan X., Zhang Y., Jiang H., Costa R., Friedrich K.A., Kriegel R. // Adv. Funct. Mater. 2022. V. 32. № 6. P. 2105702. https://doi.org/10.1002/adfm.202105702
  15. Zhu X., Yang W. // Adv. Mater. 2019. V. 31. № 50. P. 1902547. https://doi.org/10.1002/adma.201902547
  16. Kiebach R., Pirou S., Aguilera L.M., Haugen A.B., Kaiser A., Hendriksen P.V., Balague M., García-Fayos J., Manuel Serra J., Schulze-Küppers F., Christie M., Fischer L., Meulenberg W.A., Baumann S. // J. Mater. Chem. 2022. V. 10. P. 2152–2195. https://doi.org/10.1039/D1TA07898D
  17. Dyer P.N., Richards R.E., Russek S.L., Taylor D.M. // Solid State Ionics. 2000. V. 134. № 1–2. P. 21–33. https://doi.org/10.1016/S0167-2738(00)00710-4
  18. Anderson L.L., Armstrong P.A., Broekhuis R.R., Caro-lan M.F., Chen J., Hutcheon M.D., Lewinsohn C.A., Miller C.F., Repasky J.M., Taylor D.M., Woods C.M. // Solid State Ionics. 2016. V. 288. P. 331–337. https://doi.org/10.1016/j.ssi.2015.11.010
  19. Carolan M.F., Dyer P.N., Motika S.A., Alba P.B. Compositions capable of operating under high carbon dioxide partial pressures for use in solid-state oxygen producing devices. Patent US 5712220. 1998.
  20. Carolan M.F., Dyer P.N., Motika S.A., Alba P.B. Fluid separation devices capable of operating under high carbon dioxide partial pressures which utilize creep-resistant solid-state membranes formed from a mixed conducting multicomponent metallic oxide. Patent US 6056807. 2000.
  21. Carolan M.F., Dyer P.N., Motika S.A. Compositions capable of operating under high oxygen partial pressures for use in solid-state oxygen producing devices. Patent US 5817597. 1998.
  22. Hinklin T.R., Lewinsohn C.A. Solid-state membrane module. Patent US 9067172. 2015.
  23. Gordon J.H., Taylor D.M. Solid-state membrane module. Patent US 7955423. 2010.
  24. Carolan M.F., Wilson M.A., Ohm T.R., Kneidel K.E., Peterson D., Chen C.M., Rackers K.G., Dyer P.N. Planar ceramic membrane assembly and oxidation reactor system. Patent US 7279027. 2007.
  25. Thorogood R.M., Srinivasan R., Yee T.F., Drake M.P. Composite mixed conductor membranes for producing oxygen. Patent US 5240480. 1993.
  26. Underwood R.P., Tentarelli S.C. Seal between metal and ceramic conduits. Patent US 8944437. 2015.
  27. Kang D., Thorogood R.M., Allam R.J., Topham A.K.J. Integrated production of oxygen and electric power. Patent US 5657624. 1997.
  28. Minford E. Seal assembly for materials with different coefficients of thermal expansion. Patent 7581765 US. 2009.
  29. Rynders S.W., Minford E., Tressler R.E., Taylor D.M. Compliant high temperature seals for dissimilar materials. Patent 6302402 US. 2001.
  30. Russek S.L., Knopf J.A., Taylor D.M. Oxygen production by ion transport membranes with non-permeate work recovery. Patent 5753007 US. 1998.
  31. Emhjellen L.K., Strandbakke R., Haugsrud R. // J. Mater. Chem. A. 2021. V. 9. № 34. P. 18537–18545. https://doi.org/10.1039/d1ta03750a
  32. Belousov V.V. // Acc. Chem. Res. 2017. V. 50. № 2. P. 273–280. https://doi.org/10.1021/acs.accounts.6b00473
  33. Belousov V.V. // Russ. Chem. Rev. 2017. V. 86. № 10. P. 934–950. https://doi.org/10.1070/RCR4741
  34. Belousov V.V., Fedorov S.V. // J. Electrochem. Soc. 2020. V.167. № 10. P. 103501. https://doi.org/10.1149/1945-7111/ab95c9
  35. Belousov V.V., Fedorov S.V. // Chem. Commun. 2017. V. 53. № 3. P. 565–568. https://doi.org/10.1039/C6CC07935K
  36. Xu J., Li Y., Wang J., Bao H., Wang J., Zhu C., Ye L., Xie K., Kuang X. // Adv. Electron. Mater. 2018. V. 4. № 12. P. 1800352. https://doi.org/10.1002/aelm.201800352
  37. Belousov V.V., Fedorov S.V. // Langmuir. 2021. V. 37. № 28. P. 8370–8381. https://doi.org/10.1021/acs.langmuir.1c00709
  38. Belousov V.V., Fedorov S.V. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 26. P. 21794–21798. https://doi.org/10.1021/acsami.8b05315
  39. Fedorov S.V., Klimashin A.A., Belousov V.V. // J. Am. Ceram. Soc. 2022. V. 105. № 6. P. 4532–4541. https://doi.org/10.1111/jace.18406
  40. Belousov V.V., Fedorov S.V., Sedov M.S. // J. Electrochem. Soc. 2019. V. 166. P. H573. https://doi.org/10.1149/2.1411912jes
  41. Belousov V.V., Fedorov S.V. // Phys. Chem. Chem. Phys. 2021. V. 23. № 41. P. 24029–24038. https://doi.org/10.1039/D1CP03355G
  42. Belousov V.V., Fedorov S.V. // Phys. Fluids. 2020. V. 32. P. 107103. https://doi.org/10.1063/5.0023280
  43. Chen H., Ding W., Wei H., Saxén H., Yu Y. // Materials. 2022. V. 15. P. 5461. https://doi.org/10.3390/5461
  44. Van Hinsberg M.A.T., Clercx H.J.H., Toschi F. // Phys. Rev. E. 2017. V. 95. № 2. P. 023106. https://doi.org/10.1103/PhysRevE.95.023106
  45. Moreno-Casas P.A., Bombardelli F.A. // Environ. Fluid Mech. 2016. V. 16. P. 193–208. https://doi.org/10.1007/s10652-015-9424-1
  46. Garbin V., Dollet B., Overvelde M., Cojoc D., Di Fabrizio E., van Wijngaarden L., Prosperetti A., de Jong N., Lohse D., Versluis M. // Phys. Fluids. 2009. V. 21. № 9. P. 092003–1–092003–7. https://doi.org/10.1063/1.3227903
  47. Peñas-López P., Moreno Soto A., Parrales M.A., Van Der Meer D., Lohse D., Rodríguez-Rodríguez J. // J. Fluid Mech. 2017. V. 820. P. 479–510. https://doi.org/10.1017/jfm.2017.221
  48. Daitche A., Tél T. // Phys. Rev. Lett. 2011. V. 107. P. 244501. https://doi.org/10.1103/PhysRevLett.107.244501
  49. Takemura F., Magnaudet J. // Phys. Fluids. 2004. V. 16. P. 3247. https://doi.org/10.1063/1.1760691
  50. Fleury P. // C. R. Acad. Sci. Ser. C. 1966. V. 263. № 22. P. 1375–1377.
  51. Yarlagadda V. Conductivity measurements of molten metal oxide electrolytes and their evaluation in a direct carbon fuel cell (DCFC). MS Thesis, University of Kansas, 2011. 111 p.
  52. Esin O.A., Zyazev V.L. // Russ. J. Inorg. Chem. 1957. V. 2. № 9. P. 1998–2002.
  53. Babichev A., Filimonov A. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012013. https://doi.org/10.1088/1742-6596/741/1/012013
  54. Yu X., Marks T.J., Facchetti T.J. // Nat. Mater. 2016. V.15. № 4. P. 383–396. https://doi.org/10.1038/nmat4599
  55. Živković A., de Leeuw N.H. // Phys. Rev. Mater. 2020. V. 4. № 7. P. 074606. https://doi.org/10.1103/PhysRevMaterials.4.074606
  56. Park J.-H., Natesan K. // Oxid. Met. 1993. V. 39. P. 411–435. https://doi.org/10.1007/BF00664664
  57. Jin K., Hu W., Zhu B., Kim D., Yuan J., Sun Y., Xiang T., Fuhrer M.S., Takeuchi I., Greene R.L. // Sci. Rep. 2016. V. 6. P. 26642. https://doi.org/10.1038/srep26642
  58. Belousov V.V., Klimashin A.A., Fedorov S.V. // Ionics. 2016. V. 22. P. 369–376. https://doi.org/10.1007/s11581-015-1557-1
  59. Lambrecht W., Djafari-Rouhani B., Lannoo M., Ven-nik J. // J. Phys. C: Solid State Phys. 1980. V. 13. № 13. P. 2503.https://doi.org/10.1088/0022-3719/13/13/008
  60. Iordanova R., Dimitriev Y., Dimitrov V., Klissurski D. // J. Non-Cryst. Solids. 1994. V. 167. № 1–2. P. 74–80. https://doi.org/10.1016/0022-3093(94)90369-7
  61. Jovanović A., Dobrota A.S., Rafailović L.D., Mentus V., Pašti I.A., Johanssondef B., Skorodumova N.V. // Phys. Chem. Chem. Phys. 2018. V. 20. № 20. P. 13934–13943. https://doi.org/10.1039/C8CP00992A
  62. Bhandari C., Lambrecht W.R.L. // Phys. Rev. B. 2015. V. 92. № 12. P. 125133. https://doi.org/10.1103/PhysRevB.92.125133
  63. Bouwmeester H.J.M., Kruidhof H., Burggraaf A.J. // Solid State Ionics. 1994. V. 72. Part 2. P. 185–194. https://doi.org/10.1016/0167-2738(94)90145-7
  64. Klimashin A.A., Belousov V.V. // J. Electrochem. Soc. 2017. V. 164. P. H5353. https://doi.org/10.1149/2.0531708jes
  65. Мастихин В.М., Лапина О.Б., Симонова Л.Г., Бальжинимаев Б.С. // Расплавы. 1990. № 2. С. 21–30.
  66. Perez Sirkin Y.A., Gadea E.D., Scherlis D.A., Moli-nero V.J. // J. Am. Chem. Soc. 2019. V. 141. № 27. P. 10801–10811. https://doi.org/10.1021/jacs.9b04479
  67. Liu Y., Edwards M.A., German S.R., Chen Q., White H.S. // Langmuir. 2017. V. 33. № 8. P. 1845–1853. https://doi.org/10.1021/acs.langmuir.6b04607
  68. Ren H., German S.R., Edwards M.A., Chen Q., White H.S. // J. Phys. Chem. Lett. 2017. V. 8. № 11. P. 2450–2454. https://doi.org/10.1021/acs.jpclett.7b00882
  69. Gadea E.D., Perez Sirkin Y.A., Molinero V., Scherlis D.A. // J. Phys. Chem. Lett. 2020. V. 11. № 16. P. 6573–6579. https://doi.org/10.1021/acs.jpclett.0c01404
  70. Edwards M.A., White H.S., Ren H. // ACS Nano. 2019. V. 13. № 6. P. 6330–6340. https://doi.org/10.1021/acsnano.9b01015
  71. Soto Á.M., German S.R., Ren H., van der Meer D., Lohse D., Edwards M.A., White H.S. // Langmuir. 2018. V. 34. № 25. P. 7309–7318. https://doi.org/10.1021/acs.langmuir.8b01372
  72. Golovin A.M., Ivanov M.F. // J. Appl. Mech. Tech. Phys. 1971. V. 12. P. 91–94. https://doi.org/10.1007/BF00853987
  73. Chen M., Zhao B., Jak E. Viscosity measurements of high Cu2O containing slags in the Cu2O–SiO2–Al2O3 system in equilibrium with metallic Cu // Proceedings of the Ninth International Conference on Molten Slags, Fluxes and Salts. Beijing, China, 27–30 May, 2012. Paper W082.
  74. Baumann S., Serra J.M., Lobera M., Escolastico S., Schulze-Kuppers F., Meulenberg W.A. // J. Membr. Sci. 2011. V. 377. № 1–2. P. 198–205. https://doi.org/10.1016/j.memsci.2011.04.050
  75. Belousov V.V., Kulbakin I.V., Fedorov S.V., Klima-shin A.A. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 34. P. 22324–22329. https://doi.org/10.1021/acsami.6b06357
  76. Xing W., Fontaine M.-L., Li Z., Polfus J.M., Larring Y., Denonville C., Nonnet E., Stevenson A., Henriksen P.P., Bredsen R. // J. Membr. Sci. 2018. V. 548. P. 372–379. https://doi.org/10.1016/j.memsci.2017.11.042
  77. Schulze-Küppers F., Baumann S., Meulenberg W.A., Bouwmeester H.J.M. // J. Membr. Sci. 2020. V. 596. P. 117704. https://doi.org/10.1016/j.memsci.2019.117704
  78. Ruiz-Trejo E., Boldrin P., Lubin A., Tariq F., Fearn S., Chater R., Cook S.N., Atkinson A., Gruar R.I., Tighe C.J., Darr J., Brandon N.P. // Chem. Mater. 2014. V. 26. № 13. P. 3887–3895. https://doi.org/10.1021/cm501490n
  79. Li C., Li W., Chew J.J., Liu S., Zhu X., Sunarso J. // Separ. Purif. Tech. 2020. V. 235. P. 116224. https://doi.org/10.1016/j.seppur.2019.116224
  80. Boussinesq J. // C. R. Acad. Sci. Paris. 1885. V. 100. P. 935–937.
  81. Basset A.B. Treatise on hydrodynamics. V. 2. Deighton, Bell and Co., Cambridge University Press, 1888. 368 p.
  82. Oseen C.W. // Ark. Mat. Astron. Fys. 1910. V. 6. P. 1–20.
  83. Maxey M.R., Riley J.J. // Phys. Fluids. 1983. V. 26. P. 883–889. https://doi.org/10.1063/1.864230
  84. Michaelides E.E.// Phys. Fluids A. 1992. V. 4. P. 1579. https://doi.org/10.1063/1.858430
  85. Michaelides E.E. Particles, bubbles and drops – their motion, heat and mass transfer. World Scientific Publishing, Singapore, 2006. P. 424.
  86. Ландау Л.Д., Лифшиц Е.М. Гидродинамика, Серия: Теоретическая физика. Т. 6. М.: Наука, 1988. С. 736.
  87. Нигматуллин Р.И. Динамика многофазных сред, Ч. 1. М.: Наука, 1987. С. 464.
  88. Архипов В.А., Васенин И.М., Ткаченко А.С., Усани-на А.С. // Изв. РАН. Механика жидкости и газа. 2015. № 1. С. 86–94.
  89. Архипов В.А., Васенин И.М., Усанина А.С., Шрагер Г.Р. Динамическое взаимодействие частиц дисперсной фазы в гетерогенных потоках. Томск: Издательский Дом Томского государственного университета, 2019. С. 159–179.
  90. Лаврентьев M.A., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1987. С. 688.
  91. Gonnermann H.M., Gardner J.E. // Geochem. Geophys. Geosyst. 2013. V. 14. № 11. P. 4758–4773. https://doi.org/10.1002/ggge.20281
  92. Shea T. // J. Volcan. Geotherm. Res. 2017. V. 343. P. 155–170. https://doi.org/10.1016/j.jvolgeores.2017.06.025
  93. Cahn J.W., Hilliard J.E. // J. Chem. Phys. 1958. V. 28. № 2. P. 258–267. https://doi.org/10.1063/1.1744102
  94. Cahn J.W., Hilliard J.E. // J. Chem. Phys. 1959. V. 31. P. 688–699. https://doi.org/10.1063/1.1730447
  95. Vachaparambil K.J., Einarsrud K.E. // J. Electrochem. Soc. 2018. V. 165. № 10. P. E504–E512. https://doi.org/10.1149/2.1031810jes
  96. Cipcigan F.S., Sokhan V.P., Jones A.P., Crain J., Martyna G.J. // Phys. Chem. Chem. Phys. 2015. V. 17. № 14. P. 8660–8669. https://doi.org/10.1039/C4CP05506C
  97. Proussevitch A., Sahagian D., Anderson A. // J. Geophys. Res. 1993. V. 98. № B12. P. 22283–22307. https://doi.org/10.1029/93JB02027
  98. Kelton K.F., Greer A.L. Nucleation in condensed matter: Applications in materials and biology. Pergamon Materials Series, Amsterdam, 2010. 743 p.
  99. Xu W., Lan Z., Peng B., Wen R., Ma X. // RSC Adv. 2015. V. 5. № 2. P. 812–818. https://doi.org/10.1039/C4RA12352B
  100. Hurwitz S., Navon O. // Earth Planet. Sci. Lett. 1994. V. 122. № 3–4. P. 267–280. https://doi.org/10.1016/0012-821X(94)90001-9
  101. Hajimirza S., Gonnermann H.M., Gardner J.E., Giachetti T. // J. Geophys. Res. 2019. V. 124. № 3. P. 2395–2416. https://doi.org/10.1029/2018JB015891
  102. Kadyk T., Bruce D., Eikerling M. // Sci. Rep. 2016. V. 6. P. 38780. https://doi.org/10.1038/srep38780
  103. Yang J., Duan J., Fornasiero D., Ralston J. // J. Phys. Chem. B. 2003. V. 107. № 25. P. 6139–6147. https://doi.org/10.1021/jp0224113
  104. Belousov V.V., Fedorov S.V. // Russ. Chem. Rev. 2012. V. 81. № 1. P. 44–64. https://doi.org/10.1070/RC2012v081n01ABEH004209
  105. Belousov V.V. // J. Eur. Ceram. Soc. 2007. V. 27. № 12. P. 3459–3467. https://doi.org/10.1016/j.jeurceramsoc.2007.01.014
  106. Belousov V.V. // JETP Letters. 2008. V. 88. № 4. P. 259–260. https://doi.org/10.1134/S0021364008160078
  107. Fedorov S.V., Sedov M.S., Belousov V.V. // ACS Appl. Energy Mater. 2019. V. 2. № 9. P. 6860–6865. https://doi.org/10.1021/acsaem.9b01330
  108. Belousov V.V. // Ionics. 2016. V. 22. P. 451–469. https://doi.org/10.1007/s11581-016-1656-7
  109. Hirth J.P., Pound G.M., Pierre G.R.S. // Metall. Trans. 1970. V. 1. P. 939–945. https://doi.org/10.1007/BF02811776
  110. Mangan M.T., Sisson T. // J. Geophys. Res. 2005. V. 110. № B1. P. B01202. https://doi.org/10.1029/2004JB003215
  111. Hajimirza S., Gonnermann H.M., Gardner J.E. // Nat. Commun. 2021. V. 12. P. 283. https://doi.org/10.1038/s41467-020-20541-1
  112. Bagdassarov N., Dorfman A., Dingwell D.B. // Amer. Mineral. 2000. V. 85. № 1. P. 33–40. https://doi.org/10.2138/am-2000-0105
  113. Tolman R.C. // J. Chem. Phys. 1949. V. 17. P. 333–337. https://doi.org/10.1063/1.1747247
  114. German S.R., Edwards M.A., Ren H., White H.S. // J. Am. Chem. Soc. 2018. V. 140. № 11. P. 4047–4053. https://doi.org/10.1021/jacs.7b13457
  115. Ikemiya N., Umemoto J., Hara S., Ogino K. // ISIJ International. 1993. V. 33. № 1. P. 156–165. https://doi.org/10.2355/isijinternational.33.156
  116. Колмогоров А.Н. // Изв. АН СССР. Сер. мат. 1937. Т. 1. № 3. С. 355–359.
  117. Чернов А.Н., Кедринский В.К., Давыдов М.Н. // ПМТФ. 2004. Т. 45. № 2. С. 162–168.
  118. Kedrinskiy V. // Shock Waves. 2009. V. 18. P. 451–464. https://doi.org/10.1007/s00193-008-0181-7
  119. Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. М.: Наука, 1985. 398 с.
  120. Yoshioka J., Sakikawa T., Ito Y., Fukao K. // Phys. Rev. E. 2022. V. 105. № 1. P. L012701. https://doi.org/10.1103/PhysRevE.105.L012701
  121. Zheng L., Zhang X. Modeling and Analysis of Modern Fluid Problems. Elsevier, 2017. P. 468.
  122. Alhendal Y., Turan A., Kalendar A., Abou-Ziyan H., El-shiaty R. // Microgravity Sci. Technol. 2018. V. 30. P. 561–569. https://doi.org/10.1007/s12217-018-9643-4
  123. Liao Y.-C., Li Y.-C., Chang Y.-C., Huang C.-Y., Wei H.-H. // J. Fluid Mech. 2014. V. 746. P. 31–52. https://doi.org/10.1017/jfm.2014.117
  124. Tripathi M.K., Sahu K.C. // Comput. Fluids. 2018. V. 177. P. 58–68. https://doi.org/10.1016/j.compfluid.2018.10.003
  125. Saifi A.H., Mundhada V.M., Tripathi M.K. // Phys. Fluids. 2022. V. 34. P. 032112. https://doi.org/10.1063/5.0082389
  126. Madruga S., Mendoza C. // Appl. Energy. 2022. V. 306A. P. 117966. https://doi.org/10.1016/j.apenergy.2021.117966
  127. Зуев А.Л., Костарев К.Г. // УФН. 2008. Т. 178. № 10. С. 1065–1085. https://doi.org/10.3367/UFNr.0178.200810d.1065
  128. Kumar R., Lin Y-C., Lin C-W., Lin M.-C., Hsu H.-Y. // Appl. Sci. 2022. V. 12. № 9. P. 4355. https://doi.org/10.3390/app12094355
  129. Werner T., Becker M., Baumann J., Xiao X., Pickmann C., Sturz L., Brillo J., Kargl F. // Acta Mater. 2022. V. 224. P. 117503. https://doi.org/10.1016/j.actamat.2021.117503
  130. Зуев А.Л., Костарев К.Г. // ЖЭТФ. 2006. Т. 130. № 2. С. 363–370. https://doi.org/10.1134/S1063776106080140
  131. Birikh R.V. Liquid interfacial systems: Oscillations and instability. Boca Raton, CRC Press, 2003. 392 p. https://doi.org/10.1201/9780203911228
  132. Bratukhin Y.K., Kostarev K.G., Viviani A., Zuev A.L. // Exp. Fluids. 2005. V. 38. № 5. P. 594–605. https://doi.org/10.1007/s00348-005-0930-7
  133. Paluch M. // Adv. Colloid Interface Sci. 2000. V. 84. № 1–3. P. 27–45. https://doi.org/10.1016/S0001-8686(99)00014-7
  134. Hunter R.J. Zeta potential in colloid science: Principles and applications. Ottewill R.H., Rowell R.L. (Eds.). London: Academic Press, 1981. P. 398.
  135. Schechter R.S., Graciaa A., Lachaise J. // J. Colloid Interface Sci. 1998. V. 204. № 2. P. 398–399. https://doi.org/10.1006/jcis.1998.5548
  136. Есин О.А., Гельд П.В. Физическая химия пирометаллургических процессов. М.: Металлургия. 1966. С. 703.
  137. Добрынина Н.Ю., Барбина Т.М., Ватолин А.Н. Электрохимия расплавов. Екатеринбург: Издательство Уральского университета, 2018. С. 104.
  138. Yang C., Dabros T., Li D., Czarnecki J., Masli-yah J.H. // J. Colloid Interface Sci. 2001. V. 243. № 1. P. 128–135. https://doi.org/10.1006/jcis.2001.7842
  139. Yoon R.-H., Yordan J.J. // J. Colloid Interface Sci. 1986. V. 113. № 2. P. 430–438. https://doi.org/10.1016/0021-9797(86)90178-5
  140. Bhattacharyya I., Maze J.T., Ewing G.E., Jarrold M.F. // J. Phys. Chem A. 2011. V. 115. № 23. P. 5723–5728. https://doi.org/10.1021/jp102719s
  141. Fedkin M.V., Zhou X.Y., Kubicki J.D., Bandura A.V., Lvov S.N., Machesky M.L., Weslowski D.J. // Langmuir. 2003. V. 19. № 9. P. 3797–3804. https://doi.org/10.1021/la0268653
  142. Bendzko P., Strauss M. // Anal. Lett. 1981. V. 14. № 15. P. 1233–1239. https://doi.org/10.1080/00032718108081454
  143. Zhou X.Y., Wei X.J., Fedkin M.V., Strass K.H., Lvov S.N. // Rev. Sci. Instr. 2003. V. 74. P. 2501–2506. https://doi.org/10.1063/1.1556957

© В.В. Белоусов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах