BIOCHEMICAL BASIS OF THE ANTIMICROBIAL ACTIVITY OF QUINAZOLINONE DERIVATIVES IN THE LIGHT OF INSIGHTS INTO THE FEATURES OF THE CHEMICAL STRUCTURE AND WAYS OF BINDING TO TARGET MOLECULES. A REVIEW

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review characterizes the role of the main targets of antibacterial agents: “efflux pumps”; enzymes (DNA-hyruases as a subclass of topoisomerases, homoserine transacetylase, various classes of sorbitases, aromatics, lipoteichoyl synthase, polyketide synthase, pantothenate synthetase, acetyl-CoA carboxylase, sensory histidine kinase, kinase, cyclooxygenase, etc.); penicillin-binding protein; quorum signaling and adhesin systems in important biochemical processes of pathogen maintenance and virulence manifestation. The possibility of manifestation of antimicrobial effect by the substance upon its binding to the protein molecules responsible for pathogenicity of a microorganism was shown. The role of quinazolinone derivatives exhibiting high reactivity, stability in chemical processes and characterized by a wide spectrum of pharmacological activity including antimicrobial activity with respect to various gram-positive and gram-negative bacteria was determined. It has been shown that changes in the compound structure through the introduction of different substituents modify the degree of hydrophilicity and, as a result, determine a different degree of drug penetration through the cell membrane; the ability to form intermediate complex compounds stabilized by hydrogen bonds and van der Waals and stacking interactions with enzymatic targets as well as receptor-regulator proteins and signaling systems of pathogen cells. The results on prediction of the mechanism of action of the compounds synthesized by the authors of the article by methods of mathematical modeling are presented. The possibility of creating combined structures based on the quinazolinone core with various heterocyclic derivatives as a product with a pronounced antimicrobial activity is assessed. The considered regularities are of practical importance for the specialists in the field of medicinal chemistry, organic synthesis, biotechnology, clinical pharmacology, pharmaceutical chemistry and technology whose efforts are aimed at obtaining a new drug substance.

Авторлар туралы

M. Samotruyeva

Astrakhanskiy State Medical University

Email: alhimik.83@mail.ru
Russian, 414000, Astrakhan

A. Starikova

Volgograd State Medical University

Хат алмасуға жауапты Автор.
Email: alhimik.83@mail.ru
Russian, 400131, Volgograd

O. Bashkina

Astrakhanskiy State Medical University

Email: alhimik.83@mail.ru
Russian, 414000, Astrakhan

A. Tsibizova

Astrakhanskiy State Medical University

Email: alhimik.83@mail.ru
Russian, 414000, Astrakhan

A. Borisov

Volgograd State Medical University

Email: alhimik.83@mail.ru
Russian, 400131, Volgograd

D. Merezhkina

Volgograd State Medical University

Email: alhimik.83@mail.ru
Russian, 400131, Volgograd

I. Tyurenkov

Volgograd State Medical University

Email: alhimik.83@mail.ru
Russian, 400131, Volgograd

A. Ozerov

Volgograd State Medical University; Volgograd Medical Scientific Center

Email: alhimik.83@mail.ru
Russian, 400131, Volgograd; Russian, 400131, Volgograd

Әдебиет тізімі

  1. Desai N.C., Dodiya A., Shihory N. // J. Saudi Chem. Soc. 2013. V. 17. P. 259–267. https://doi.org/10.1016/j.jscs.2011.04.001
  2. Шемякин И.Г., Фирстова В.В., Фурсова Н.К., Абаев И.В., Филиппович С.Ю., Игнатов С.Г., Дятлов И.А. // Биохимия. 2020. Т. 85. № 11. С. 1615–1632. https://doi.org/10.31857/S0320972520110081
  3. Borges A., Saavedra M.J., Simoes M.// Curr. Med. Chem. 2015. V. 22. P. 2590–2614. https://doi.org/10.2174/0929867322666150530210522
  4. Гординская Н.А., Борискина Е.В., Кряжев Д.В. // Здоровье населения и среда обитания. 2021. № 4. С. 50–56. https://doi.org/10.35627/2219-5238/2021-337-4-50-56
  5. Карева Е.Н., Сереброва С.Ю., Лазарева Н.Б., Шипилова С.Ю., Булгакова В.А., Козаева Л.П., Кононова И.Н., Яровой С.К., Дроздов В.Н., Стародубцев А.К. // Экспериментальная и клиническая фармакология. 2018. Т. 81. № 9. С. 26–32. https://doi.org/10.30906/0869-2092-2018-81-9-26-32
  6. Путилина А.Д., Коменкова Т.С., Зайцева Е.А. // Медико-фармацевтический журнал “Пульс”. 2019. Т. 21. № 10. С. 125–130. https://doi.org/10.26787/nydha-2686-6838-2019-21-10-125-130
  7. Du D., Wang-Kan X., Neuberger A., Veen H.W., Pos K.M., Piddock L.J.V., Luisi B.F. // Nat. Rev. Microbiol. 2018. V. 16. № 9. P. 523–539. https://doi.org/10.1038/s41579-018-0048-6
  8. Иванов М.Э., Фурсова Н.К., Потапов В.Д. // Клиническая лабораторная диагностика. 2022. Т. 67. № 1. С. 53–58. https://doi.org/10.51620/0869-2084-2022-67-1-53-58
  9. Карпова Е.В., Тапальский Д.В. // Лабораторная диагностика. Восточная Европа. 2022. Т. 11. № 2. С. 214–223. https://doi.org/10.34883/PI.2022.11.2.018
  10. Pagès J.M., Amaral L., Fanning S. // Curr. Med. Chem. 2011. V. 18. P. 2969–2680. https://doi.org/10.2174/092986711796150469
  11. Henderson P.J., Maher C., Elbourne L.D.H., Eijkel-kamp B.A., Paulsen I.T., Hassan K.A. // Chem. Rev. 2021. V. 121. № 9. P. 5417–5478. https://doi.org/10.1021/acs.chemrev.0c01226
  12. Alav I., Sutton J.M., Rahman K.M. // J. Antimicrob. Chemother. 2018. V. 73. № 8. P. 2003–2020. https://doi.org/10.1093/jac/dky042
  13. Hassan K.M., Datta D., Nguyen A.N. // Antibiotics. 2021. V. 11. № 1. P. 40. https://doi.org/10.3390/antibiotics11010040
  14. Liu J., Takiff H.E., Nikaido H. // J. Bacteriol. 1996. V. 178. № 13. P. 3791–3795. https://doi.org/10.1128/jb.178.13.3791-3795.1996
  15. Kumar S., Lekshmi M., Parvathi A., Ojha M., Wenzel N., Varela M.F. // Microorganisms. 2020. V. 8. № 2. P. 266–286. https://doi.org/10.3390/microorganisms8020266
  16. Takiff H.E., Cimino M., Musso M.C., Weisbrodi T., Martinez R., Delgado M.B., Salazar L., Bloom B.R., Jacobs W.R. // Proc. Natl. Acad. Sci. USA. 1996. № 93. 362–367. https://doi.org/10.1073/pnas.93.1.362
  17. Costa S.S., Sobkowiak B., Parreira R., Edgeworth J.D., Viveiros M., Clark T.G., Couto I. // Front. Genet. 2019. № 9. P. 710. https://doi.org/10.3389/fgene.2018.00710
  18. Туницкая В.Л., Хомутов А.Р., Кочетков С.Н., Котовская С.К., Чарушин В.Н. // Acta Naturae. 2011. Т. 3. № 4. С. 98–104.
  19. Aguirre A.L., Chheda P.R., Lentz S.R.C., Held H.A., Groves N.P., Hiasa H., Kerns R.J. // Bioorg. Med. Chem. 2020. V. 28. № 10. P. 115439. https://doi.org/10.1016/j.bmc.2020.115439
  20. Федорчук В.В., Грудинина С.А., Кротова Л.А., Черкашин Е.А., Сидоренко С.В., Тишков В.И. // Вестник Московского университета. Серия 2. Химия. 2002. Т. 43. № 6. С. 349–352.
  21. Barančoková M., Kikelj D., Ilaš J. // Future Med. Chem. 2018. V. 10. № 10. P. 1207–1227. https://doi.org/10.4155/fmc-2017-0257
  22. Kolarič A., Germe T., Hrast M., Stevenson C.E., Law-son D.M., Burton N.P., Vörös J., Maxwell A., Minovski N., Anderluh M. // Nat. Commun. 2021. V. 12. № 1. P. 150–163. https://doi.org/10.1038/s41467-020-20405-8
  23. Khan T., Sankhe K., Suvarna V., Sherje A., Patel K., Dravyakar B. // Biomed. Pharmacotherapy. 2018. V. 103. P. 923–938. https://doi.org/10.1016/j.biopha.2018.04.021
  24. Champoux J.J. // Annu. Rev. Biochem. 2001. V. 70. P. 369–413. https://doi.org/10.1146/annurev.biochem.70.1.369
  25. Dighe S.N., Collet T.A. // Eur. J. Med. Chem. 2020. V. 199. P. 112326. https://doi.org/10.1016/j.ejmech.2020.112326
  26. Asadi P., Khodarahmi G., Jahanian-Najafabadi A., Saghaie L., Hassanzadeh F. // Iran. J. Basic. Med. Sci. 2017. V. 20. № 9. P. 975–989. https://doi.org/10.22038/IJBMS.2017.9260
  27. Асямов К.В., Свёклина Т.С., Тюрюпов М.С., Мися-ков Е.П., Фролов Д.С. // Лечение и профилактика. 2020. Т. 10. № 4. С. 106–118.
  28. Fortune J.M., Osheroff N. // J. Biol. Chem. 1998. V. 273. № 28. P. 17643–17650. https://doi.org/10.1074/jbc.273.28.17643
  29. Сутормин Д.А., Галивонджян А.Х., Полховский А.В., Камалян С.О., Северинов К.В., Дубилей С.А. // Acta Naturae. 2021. Т. 13. № 1. С. 59–75. https://doi.org/10.32607/actanaturae.11058
  30. Pascale G.D., Nazi I., Harrison P.H., Wright G.D. // J. Antibiot. 2011. V. 64. № 7. P. 483–487. https://doi.org/10.1038/ja.2011.37
  31. Nazi I., Scott A., Sham A., Rossi L., Williamson P.R., Kronstad J.W., Wright G.D. // Antimicrob. Agents Chemother. 2007. V. 51. № 5. P. 1731–1736. https://doi.org/10.1128/AAC.01400-06
  32. Chaton C.T., Rodriguez E.S., Reed R.W., Li J., Ken-ner C.W., Korotkov K.V. // Sci. Rep. 2019. V. 9. № 1. P. 1–11. https://doi.org/10.1038/s41598-019-56722-2
  33. Mabkhot Y.N., Al-Har M.S., Barakat A., Aldawsari F.D., Aldalbahi A., Ul-Haq Z. // Molecules. 2014. V. 19. № 7. P. 8725–8739. https://doi.org/10.3390/molecules19078725
  34. Matrelov N., Kurbatskaya V., Rudevitsa Z., Leonchik A., Fridmanis D. // Antibiotics. 2021. V. 10. № 2. P. 164. https://doi.org/10.3390/antibiotics10020164
  35. Spirig T., Weiner E.M., Clubb R.T. // Mol. Microbiol. 2011. V. 82. № 5. P. 1044–1059. https://doi.org/10.1111/j.1365-2958.2011.07887.x
  36. Зигангирова Н.А., Лубенец Н.Л., Зайцев А.В., Пушкарь Д.Ю. // Клиническая микробиология и антимикробная химиотерапия. 2021. Т. 23. № 2. С. 184–194.
  37. Volynets G., Vyshniakova H., Nitulescu G., Nitulescu G.M., Ungurianu A., Margina D., Moshynets O., Bdzhola V., Koleiev I., Iungin O., Tarnavskiy S., Yarmoluk S. // Molecules. 2021. V. 26. № 23. P. 7095–7106. https://doi.org/10.3390/molecules26237095
  38. Wang J., Shi Y., Jing S., Dong H., Wang D., Wang T. // Molecules. 2019. V. 24. № 3. P. 465–475. https://doi.org/10.3390/molecules24030465
  39. Sapra R., Rajora A.K., Kumar P., Maurya G.P., Pant N., Haridas V. // J. Med. Chem. 2021. V. 64. № 18. P. 13097–13130. https://doi.org/10.1021/acs.jmedchem.1c00386
  40. Jaudzems K., Kurbatska V., Jēkabsons A., Bobrovs R., Rudevica Z., Leonchiks A. // ACS Infect. Dis. 2019. V. 6. № 2. P. 186.
  41. Bradshaw W.J., Davies A.H., Chambers C.J., Roberts A.K., Shone C.C., Acharya K.R. // FEBS J. 2015. V. 282. P. 2097–2114. https://doi.org/10.1111/febs.13288
  42. Susmitha A., Bajaj H., Nampoothiri K.M. // The Cell Surface. 2021. V. 7. P. 100055. https://doi.org/10.1016/j.tcsw.2021.100055
  43. Narashimamurthy N., Rao A.R., Sastry G.N. // Curr. Med. Chem. – Anti-Cancer Agents. 2004. V. 4. № 6. P. 523–534. https://doi.org/10.2174/1568011043352669
  44. Alfonso A.Y.C., Lagares L.M., Novic M., Benfenati E., Kumar A., Chayawan // Toxicology in Vitro. 2022. V. 81. P. 105332. https://doi.org/10.1016/j.tiv.2022.105332
  45. Pingaew R., Prachayasittikul V., Anuwongcharoen N., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. // Bioorg. Chem. 2018. V. 79. P. 171–178. https://doi.org/10.1016/j.bioorg.2018.05.002
  46. Sauvage E., Kerff F., Terrak M., Ayala J.A., Charlier P. // FEMS Microbiol. Rev. 2008. V. 32. № 2. P. 234–258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
  47. Meroueh S.O., Bencze K.Z., Hesek D., Lee M., Fisher J.F., Stemmler T.L., Mobashery S. // PNAS. 2006. V. 13. № 12. P. 4404–4409. https://doi.org/10.1073/pnas.0510182103
  48. Egan A.J.F., Cleverley R.M., Peters K., Lewis R.J., Vollmer W. // FEBS J. 2017. V. 284. № 6. P. 851–867. https://doi.org/10.1111/febs.13959
  49. Филиппова А.А., Рубцова М.Ю., Уляшова М.М., Фурсова Н.К. // Бактериология. 2020. Т. 5. № 3. С. 34–46. https://doi.org/10.20953/2500-1027-2020-3-34-46
  50. Ferrer-González E., Huh H., Al-Tameemi H.M., Boyd J.M., Lee S-H., Pilch D.S. // J. Bacteriol. 2021. V. 203. № 16. P. e00204-21. https://doi.org/10.1128/JB.00204-21
  51. Łeski T.A., Tomasz A. // J. Bacteriol. 2005. V. 187. № 5. P. 1815–1824. https://doi.org/10.1128/JB.187.5.1815-1824.2005
  52. Teo A.C.K., Roper D.I. // Antibiotics. 2015. V. 4. № 4. P. 495–520. https://doi.org/10.3390/antibiotics4040495
  53. Kuru E., Radkov A., Meng X., Egan A., Alvarez L., Dowson A., Booher G., Breukink E., Roper D.I., Cava F., Vollmer W., Brun Y., VanNieuwenhze M.S. // ACS Chem. Biol. 2019. V. 4. № 12. P. 2745–2756. https://doi.org/10.1021/acschembio.9b00664
  54. Martinez de Tejada G., Sanchez-Gómez S., Razquin-Olazaran I., Kowalski I., Kaconis Y., Heinbockel L., Andrä J., Schürholz T., Hornef M., Dupont A., Garidel P., Gutsmann T., David S.A., Brandenburg K. // Curr. Drug Targets. 2012. V. 13. № 9. P. 1121–1151. https://doi.org/10.2174/138945012802002410
  55. Brauweiler A.M., Goleva E., Leung D.Y. // J. Invest. Dermatol. 2019. V. 139. № 8. P. 1753–1761. https://doi.org/10.1016/j.jid.2019.02.006
  56. Ahn K.B., Baik J.E., Yun C.H., Han S.H. // Front. Microbiol. 2018. V. 9. P. 327. https://doi.org/10.3389/fmicb.2018.00327
  57. Richter S.G., Elli D., Kim H.K., Hendrickx A.P.A., Sorg J.A., Schneewind O., Missiakas D. // PNAS. 2013. V. 110. № 9. P. 3531–3536. https://doi.org/10.1073/pnas.1217337110
  58. Zhang B., Liu X., Lambert E., Mas G., Hiller S., Veening J.W., Perez C. // Nat. Struct. Mol. Biol. 2020. V. 27. № 6. P. 561–569. https://doi.org/10.1038/s41594-020-0425-5
  59. Wilson R., Kumar P., Parashar V., Vilchèze C., Chur-let R.V., Freundlich J.S., Barnes S.W., Walker J.R., Szymonifka M.J., Marchiano E., Shenai S., Colangeli R., Jacobs W.R., Jr., Neiditch M.B., Kremer L., Alland D. // Nat. Chem. Biol. 2013. V. 9. № 8. P. 499–506. https://doi.org/10.1038/nchembio.1277
  60. Frankfather K., Jiang X., Xu F.F. // J. Am. Soc. Mass spectrum. 2018. V. 29. P. 1688–1699. https://doi.org/10.1007/s13361-018-1993-z
  61. Bon C., Cabantous S., Julien S., Guillet V., Chalut C., Rima J., Brison Y., Malaga W., Sanchez‑Dafun A., Gavalda S., Quémard A., Marcoux J., Waldo G.S., Guilhot C., Mourey L. // BMC Biol. 2022. V. 20. № 1. P. 147. https://doi.org/10.1186/s12915-022-01337-9
  62. Bhatt A., Molle V., Besra G.S., Jacobs W.R., Jr., Kre-me L. // Mol. Microbiol. 2007. V. 64. № 6. P. 1442–1454. https://doi.org/10.1111/j.1365-2958.2007.05761.x
  63. Von Delft F., Lewendon A., Dhanaraj V., Blundell T.L., Abell C., Smith A.G. // Structure. 2001. V. 9. № 5. P. 439–450. https://doi.org/10.1016/S0969-2126(01)00604-9
  64. Hamilton T.D., Papaefstathiou G.S., MacGillivray L.R. // Etter Transactions. 2005. V. 1. P. 2–5.
  65. Waldrop G.L., Rayment I., Holden H.M. // Biochemistry. 1994. V. 33. № 34. P. 10249–10256. https://doi.org/10.1021/bi00200a004
  66. Walley J.W., Kliebenstein D.J., Bostock R.M., Dehesh K. // Curr. Opin. Plant Biol. 2013. V. 16. № 4. P. 520–526. https://doi.org/10.1016/j.pbi.2013.06.011
  67. Hirakawa H., Kurushima J., Hashimoto Y., Tomita H. // Antibiotics. 2020. V. 9. № 10. P. 635. https://doi.org/10.3390/antibiotics9100635
  68. Thomas L., Cook L. // Infect. Immun. 2020. V. 88. № 7. P. e00931-19. https://doi.org/10.1128/IAI.00931-19
  69. Tiwari S., Jamal S.B., Hassan S.S., Carvalho P.V.S.D., Almeida S., Barh D., Ghosh P., Silva A., Castro T.L.P., Azevedo V. // Front. Microbiol. 2017. V. 8. P. 1878. https://doi.org/10.3389/fmicb.2017.01878
  70. Bhagirath A.Y., Li Y., Patidar R., Yerex K., Ma X., Kumar A., Duan K. // Int. J. Mol. Sci. 2019. V. 20. № 7. P. 1781. https://doi.org/10.3390/ijms20071781
  71. Gotoh Y., Doi A., Furuta E., Dubrac S., Ishizaki Y., Okada M., Igarashi M., Misawa N., Yoshikawa H., Okajima T., Msadek R. Utsumi T. // J. Antibiot. 2010. V. 63. P. 127–134. https://doi.org/10.1038/ja.2010.4
  72. Kato A., Ueda S., Oshima T., Inukai Y., Okajima T., Igarashi M., Eguchi Y., Ryutaro Utsumi. // J. Gen. Appl. Microbiol. 2017. V. 63. № 4. P. 212–221.
  73. Хайтович А.Б., Мурейко Е.А. // Таврический медико-биологический вестник. 2018. Т. 21. № 1. С. 214–220.
  74. Otto M. // FEMS Microbiol. Lett. 2004. V. 241. № 2. P. 135–141. https://doi.org/10.1016/j.femsle.2004.11.016
  75. Шпаков А.О. // Микробиология. 2009. Т. 78. № 2. С. 163–175. https://doi.org/10.1134/S0026261709020015
  76. Баженов С.В., Щеглова Е.С., Фомин В.В., Завильгельский Г.Б., Манухов И.В. // Генетика. 2022. Т. 58. № 2. С. 148–156. https://doi.org/10.31857/S0016675822020023
  77. Марданова А.М., Кабанов Д.А., Рудакова Н.Л., Шарипова М.Р. Биопленки: Основные принципы организации и методы исследования. Учебное пособие. Казань, 2016. С. 9.
  78. Chu W., McLean R.J.C. // J. Aquat. Anim. Health. 2016. V. 28. № 2. P. 91–96. https://doi.org/10.1080/08997659.2016.1150907
  79. Курсов С.В., Никонов В.В. // Медицина неотложных состояний. 2016. Т. 5. № 76. С. 27–35. https://doi.org/10.22141/2224-0586.5.76.2016.76430
  80. Alsibaee A.M., Al-Yousef H.M., Al-Salem H.S. // Molecules. 2023. V. 28. № 3. P. 978. https://doi.org/10.3390/molecules28030978
  81. Dogovski C., Atkinson S.C., Dommaraju S., Dobson R., Perugini M., Hor L., Hutton C., Gerrard A. // Encyclopedia of Life Support Systems. 2009. V. 11. P. 116–136.
  82. Jafari E., Khajouei M.R., Hassanzadeh F., Hakime-lahi G.H., Khodarahmi G.A. // Res. Pharm. Sci. 2016. V. 11. № 1. P. 1.
  83. Цибизова А.А., Ясенявская А.Л., Озеров А.А., Тюренков И.Н., Башкина О.А., Самотруева М.А. // Сибирский научный медицинский журнал. 2021. Т. 41. № 6. С. 56–60. https://doi.org/10.18699/SSMJ20210606
  84. Цибизова А.А., Самотруева М.А., Ковалев В.Б., Тюренков И.Н. // Астраханский медицинский журнал. 2017. Т. 12. № 4. С. 27–43.
  85. Samotrueva M.A., Ozerov A.A., Starikova A.A., Gabi-tova N.M., Merezhkina D.V., Tsibizova A.A., Tyuren-kov I.N. // Pharm. Pharmacol. 2021. V. 9. № 4. P. 318–329. https://doi.org/10.19163/2307-9266-2021-9-4-318-329
  86. Старикова А.А., Габитова Н.М., Цибизова А.А., Озеров А.А., Тюренков И.Н., Башкина О.А., Само-труева М.А. // Астраханский медицинский журнал. 2022. Т. 17. № 1. С. 60–71. https://doi.org/10.48612/agmu/2022.17.1.60.71
  87. Жарких Л.И., Смирнова Ю.А. // Вестник технологического университета. 2020. Т. 23. № 1. С. 104–111.
  88. Sen T., Neog K., Sarma S., Manna P., Boruah H.P.D., Gogoi P., Singh A.K. // Bioorg. Med. Chem. 2018. V. 26. № 17. P. 4942–4951. https://doi.org/10.1016/j.bmc.2018.08.034
  89. Rajasekar K.K., Nizamuddin N.D., Surur A.S., Mekonnen Y.T. // Research and reports on Medical Chemistry. 2016. V. 6. P. 15–26. https://doi.org/10.2147/RRMC.S91474
  90. Khodarakhmi G.A., Hajway M.R., Hakimelahi G.H., Abedi D., Jafari E., Hassanzadeh F. // Res. Pharm. Sci. 2012. V. 7. № 3. P. 151.
  91. Qian Y., Allegretta G., Janardhanan J., Peng Z., Mahasenan K.V., Lastochkin E., Gozun M.M.N., Tejera S., Schroeder V.A., Wolter W.R., Feltzer R., Mobashery S., Chang M. // J. Med. Chem. 2020. V. 63. № 10. P. 5287–5296. https://doi.org/10.1021/acs.jmedchem.0c00153
  92. Ibrahim M.A.A., Abdeljawaad K.A.A., Abdelrahman A.H.M., Alzahrani O.R., Alshabrmi F.M., Khalaf E., Mousta-fa M.F., Alrumaihi F., Allemailem K.S., Soliman M.E.S., Paré P.W., Hegazy M.E.F., Atia M.A.M. // Antibiotics. 2021. V. 10. № 8. P. 934.
  93. Norouzbahari M., Salarinejad S., Güran M., Şanlıtürk G., Emamgholipour Z., Bijanzadeh H.R., Toolabi M., Foroumadi A. // DARU J. Pharm. Sci. 2020. V. 28. № 2. P. 661–672. https://doi.org/10.1007/s40199-020-00373-6
  94. Patel M.B., Kumar S.P., Valand N.N., Jasrai Y.T., Menon S.K. // Mol. Model. 2013. V. 19. № 8. P. 3201–3217. https://doi.org/10.1007/s00894-013-1820-1
  95. Espeland L.O., Georgiou C., Klein R., Bhukya H., Haug B.E., Underhaug J., Mainkar P.S., Brenk R. // ChemMedChem. 2021. V. 16. P. 2715–2726. https://doi.org/10.1002/cmdc.202100302
  96. Devi P.U., Lakshmi K.A., Ramji M.T., Khan P.A.A. // J. Pharm. Res. 2010. V. 3. № 11. P. 2765–2768.
  97. Sharma P.C., Jane A., Jane S., Pahwa R., Yar M.S. // J. Enzyme Inhib. Med. Chem. 2010. V. 25. № 4. P. 577–589. https://doi.org/10.3109/14756360903373350
  98. Fedorowicz J., Saczewski J. // Monatsh. Chem. 2018. V. 149. № 7. P. 1199–1245. https://doi.org/10.1007/s00706-018-2212-0
  99. Jawad A.M., Aljamali N.M., Jwad S.M. // Indian J. Forensic Med. Toxicol. 2020. V. 14. № 2. P. 1115–1122. https://doi.org/10.37506/ijfmt.v14i2.3067
  100. Aguirre A.L., Cheda R., Lenz S.R., Held H.A., Groves N., Hiasa H., Kerns R.J. // Bioorg. Med. Chem. 2020. V. 28. № 10. P. 115439. https://doi.org/10.1016/j.bmc.2020.115439
  101. Mahato A.K., Srivastava B., Shanthi C.N. // Inventi Rapid: Med. Chem. 2011. V. 1. P. 1–6.
  102. Mahato A., Shrivastava B., Shanthi N. // Chem. Sci. Trans. 2015. V. 4. № 2. P. 595–603. https://doi.org/10.7598/cst2015.995
  103. Khodarahmi G., Asadi P., Hassanzadeh F., Khodarah-mi E. // J. Res. Med. Sci. 2015. V. 20. № 11. P. 1094–1104. https://doi.org/10.4103/1735-1995.172835
  104. Arévalo J.M.C., Amorim J.C. // Sci. Rep. 2022. V. 12. № 1. P. 4742. https://doi.org/10.1038/s41598-022-08359-x
  105. Ghorab M.M., Alqahtani A.S., Soliman A.M., As-kar A.A. // Int. J. Nanomedicine. 2020. V. 15. P. 3161. http://doi.org/10.2147/IJN.S241433
  106. Carabajal M.A., Asquith C.R.M., Laitinen T., Tiz-zard G.J., Yim L., Rial A., Chabalgoity J.A., Zuer-cher W.J., Vescovi E.G. // Antimicrob. Agents Chemother. 2019. V. 64. № 1. P. e01744–19. https://doi.org/10.1128/AAC.01744-19
  107. Carabajal M.A., Viarengo G., Yim L., Martínez-Sanguiné A., Mariscotti J.F., Chabalgoity J.A., Rasia R.M., Véscovi E.G. // Sci. Signal. 2020. V. 13. № 628. P. eaaz3334. https://doi.org/10.1126/scisignal.aaz3334
  108. Grossman S., Soukarieh F., Richardson W., Liu R., Mashabi A., Emsley J., Williams P., Camara M., Stocks M.J. // Eur. J. Med. Chem. 2020. V. 208. P. 112778. https://doi.org/10.1016/j.ejmech.2020.112778
  109. Schütz C., Empting M. // Beilstein J. Org. Chem. 2018. V. 14. № 1. P. 2627–2645. https://doi.org/10.3762/bjoc.14.241
  110. Soukarieh F., Williams P., Stocks M.J., Camara M. // J. Med. Chem. 2018. V. 61. № 23. P. 10385–10402. https://doi.org/10.1021/acs.jmedchem.8b00540
  111. Rasapalli S., Murphy Z.F., Sammeta V.R., Golen J.A., Weig A.W., Melander R.J., Melander C., Macha P., Vasudev M.C. // Bioorganic Med. Chem. Lett. 2020. V. 30. № 23. P. 127550. https://doi.org/10.1016/j.bmcl.2020.127550
  112. Pereira M.D.F., Chevrot R., Rosenfeld E., Thiery V., Besson T. // J. Enzyme Inhib. Med. Chem. 2007. V. 22. № 5. P. 225–233. https://doi.org/10.1007/s00044-012-0004-3
  113. Zayed M.F., Ibrahim S.R.M., Habib E.S.E., Hassan M.H., Ahmed S., Rateb H.S. // Med. Chem. 2019. V. 15. № 6. P. 659–675. https://doi.org/10.2174/1573406414666181109092944
  114. Poojari S., Naik P.P., Krishnamurthy G., Kumara J.K.S., Kumar N.S., Naik S. // J. Taibah. Univ. Sci. 2017. V. 11. P. 497–511. https://doi.org/10.1016/j.jtusci.2016.10.003
  115. Mazumdar K., Dastidar S.G., Park J.H., Dutta N.K. // Eur. J. Clin. Microbiol. Infect. Dis. 2009. V. 28. № 8. P. 881–891. https://doi.org/10.1007/s10096-009-0739-z
  116. Laddha S.S., Wadodkar S.G., Meghal S.K. // ARKIVOC. 2006. V. 11. P. 1–20.
  117. Auti P.S., George G., Paul A.T. // RSC Adv. 2020. V. 10. № 68. P. 41353–41392. https://doi.org/10.1039/D0RA06642G
  118. Maddali N.K., Viswanath I.V.K., Murthy Y.L.N., Bera R., Takhi M., Rao N.S., Gudla V. // Med. Chem. Res. 2019. V. 28. P. 559–629. https://doi.org/10.1007/s00044-019-02313-9
  119. Mason J.I., Murry B.A., Olcott M., Sheets J.J. // Biochem. Pharmacol. 1985. V. 34. № 7. P. 1087–1092. https://doi.org/10.1016/0006-2952(85)90613-6

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (941KB)
3.

Жүктеу (620KB)
4.

Жүктеу (432KB)
5.

Жүктеу (350KB)
6.

Жүктеу (31KB)
7.

Жүктеу (6KB)
8.

Жүктеу (14KB)
9.

Жүктеу (30KB)
10.

Жүктеу (31KB)
11.

Жүктеу (16KB)
12.

Жүктеу (31KB)
13.

Жүктеу (17KB)
14.

Жүктеу (16KB)
15.

Жүктеу (14KB)
16.

Жүктеу (25KB)
17.

Жүктеу (36KB)
18.

Жүктеу (24KB)
19.

Жүктеу (18KB)
20.

Жүктеу (29KB)
21.

Жүктеу (25KB)
22.

Жүктеу (21KB)
23.

Жүктеу (19KB)
24.

Жүктеу (10KB)
25.

Жүктеу (17KB)
26.

Жүктеу (19KB)
27.

Жүктеу (13KB)
28.

Жүктеу (11KB)
29.

Жүктеу (54KB)
30.

Жүктеу (36KB)
31.

Жүктеу (34KB)
32.

Жүктеу (25KB)
33.

Жүктеу (24KB)
34.

Жүктеу (25KB)

© М.А. Самотруева, А.А. Старикова, О.А. Башкина, А.А. Цибизова, А.В. Борисов, Д.В. Мережкина, И.Н. Тюренков, А.А. Озеров, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>