AQUEOUS-PHASE HYDROGENATION OF FURFURAL IN THE PRESENCE OF SUPPORTED METALLIC CATALYSTS OF DIFFERENT TYPES. A REVIEW

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Hydrogenation of furfural in the presence of heterogeneous catalysts has recently attracted increased interest as a method for the synthesis of oxygen-containing compounds of various classes based on renewable raw materials. The composition of the catalyst and the conditions of its preparation essentially determine which of the routes of reductive conversions during the hydrogenation of furfural will be predominant. The present review summarizes and analyzes methods for controlling the physicochemical and functional properties of various metal catalysts with an emphasis on Pd-, Ni-, Co, and Cu-containing catalytic compositions, as the most common and practically significant in the hydrogenation of furfural. Many examples show the influence of the nature of the support, the composition of the active metal precursor, and the conditions for the formation of metal nanoparticles on the activity and selectivity of supported catalysts in the reductive conversions of furfural under aqueous-phase hydrogenation conditions. Promising directions of research on the development of methods for the synthesis of efficient catalysts with controlled functional properties in the hydrogenation of furfural are considered. The bibliography includes 127 references.

Sobre autores

R. Mironenko

Center of New Chemical Technologies BIC

Autor responsável pela correspondência
Email: mironenko@ihcp.ru
Russian, 644040, Omsk

O. Belskaya

Center of New Chemical Technologies BIC

Email: mironenko@ihcp.ru
Russian, 644040, Omsk

V. Likholobov

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: mironenko@ihcp.ru
Russian, 630090, Novosibirsk

Bibliografia

  1. Кузнецов Б.Н. Катализ химических превращений угля и биомассы. Новосибирск: Наука, 1990. 302 с.
  2. Huber G.W., Iborra S., Corma A. // Chem. Rev. 2006. V. 106. № 9. P. 4044–4098. https://doi.org/10.1021/cr068360d
  3. Serrano-Ruiz J.C., West R.M., Dumesic J.A. // Annu. Rev. Chem. Biomol. Eng. 2010. V. 1. P. 79–100. https://doi.org/10.1146/annurev-chembioeng-073009-100935
  4. Мурзин Д.Ю., Симакова И.Л. // Катализ в промышленности. 2011. № 3. С. 8–40.
  5. Besson M., Gallezot P., Pinel C. // Chem. Rev. 2014. V. 114. № 3. P. 1827–1870. https://doi.org/10.1021/cr4002269
  6. Chemical Catalysts for Biomass Upgrading. Crocker M., Santillan-Jimenez E. (Eds.). Weinheim: Wiley-VCH, 2020. 619 p. https://doi.org/10.1002/9783527814794
  7. Deng F., Amarasekara A.S. // Ind. Crops Prod. 2021. V. 159. Article 113055. https://doi.org/10.1016/j.indcrop.2020.113055
  8. Zeitsch K.J. The Chemistry and Technology of Furfural and its Many By-Products. Amsterdam: Elsevier, 2000. 358 p. https://doi.org/10.1016/S0167-7675(00)80001-9
  9. Морозов Е.Ф. Производство фурфурола. М.: Лесная промышленность, 1988. 200 с.
  10. Ye L., Han Y., Wang X., Lu X., Qi X., Yu H. // Mol. Catal. 2021. V. 515. Article 111899. https://doi.org/10.1016/j.mcat.2021.111899
  11. Yong K.J., Wu T.Y., Lee C.B.T.L., Lee Z.J., Liu Q., Jahim J.M., Zhou Q., Zhang L. // Biomass Bioenergy. 2022. V. 161. Article 106458. https://doi.org/10.1016/j.biombioe.2022.106458
  12. Cousin E., Namhaed K., Pérès Y., Cognet P., Delmas M., Hermansyah H., Gozan M., Alaba P.A., Aroua M.K. // Sci. Total Environ. 2022. V. 847. Article 157599. https://doi.org/10.1016/j.scitotenv.2022.157599
  13. Stenhouse J. // London, Edinburgh, Dublin Philos. Mag. J. Sci. Ser. 3. 1841. V. 18. № 115. P. 122–124. https://doi.org/10.1080/14786444108650258
  14. LaForge F.B., Mains G.H. // Ind. Eng. Chem. 1923. V. 15. № 8. P. 823–829. https://doi.org/10.1021/ie50164a022
  15. Brownlee H.J., Miner C.S. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 201–204. https://doi.org/10.1021/ie50458a005
  16. Четвериков Н.М., Лазарев А.И. Фурфурол и его производство. М.: Снабтехиздат, 1933. 48 с.
  17. Jaswal A., Singh P.P., Mondal T. // Green Chem. 2022. V. 24. № 2. P. 510–551. https://doi.org/10.1039/D1GC03278J
  18. Namsaraev Z.B., Gotovtsev P.M., Komova A.V., Vasi-lov R.G. // Renew. Sustain. Energy Rev. 2018. V. 81. P. 625–634. https://doi.org/10.1016/j.rser.2017.08.045
  19. Kabbour M., Luque R. Furfural as a platform chemical: from production to applications. In: Recent advances in development of platform chemicals. Saravanamurugan S., Pandey A., Li H., Riisager A. (Eds.). Amsterdam: Elsevier, 2020. P. 283–297. https://doi.org/10.1016/B978-0-444-64307-0.00010-X
  20. Li X., Jia P., Wang T. // ACS Catal. 2016. V. 6. № 11. P. 7621–7640. https://doi.org/10.1021/acscatal.6b01838
  21. Mariscal R., Maireles-Torres P., Ojeda M., Sádaba I., López Granados M. // Energy Environ. Sci. 2016. V. 9. № 4. P. 1144–1189. https://doi.org/10.1039/C5EE02666K
  22. Long J., Xu Y., Zhao W., Li H., Yang S. // Front. Chem. 2019. V. 7. Article 529. https://doi.org/10.3389/fchem.2019.00529
  23. Chen S., Wojcieszak R., Dumeignil F., Marceau E., Royer S. // Chem. Rev. 2018. V. 118. № 22. P. 11023–11117. https://doi.org/10.1021/acs.chemrev.8b00134
  24. Zhang S., Ma H., Sun Y., Liu X., Zhang M., Luo Y., Gao J., Xu J. // Chin. J. Catal. 2021. V. 42. № 12. P. 2216–2224. https://doi.org/10.1016/S1872-2067(21)63842-1
  25. Wang Y., Zhao D., Rodríguez-Padrón D., Len C. // Catalysts. 2019. V. 9. № 10. Article 796. https://doi.org/10.3390/catal9100796
  26. Yu Z., Lu X., Wang X., Xiong J., Li X., Zhang R., Ji N. // ChemSusChem. 2020. V. 13. № 19. P. 5185–5198. https://doi.org/10.1002/cssc.202001467
  27. Long J., Zhao W., Li H., Yang S. Furfural as a renewable chemical platform for furfuryl alcohol production. In: Recent advances in development of platform chemicals. Saravanamurugan S., Pandey A., Li H., Riisager A. (Eds.). Amsterdam: Elsevier, 2020. P. 299–322. https://doi.org/10.1016/B978-0-444-64307-0.00011-1
  28. Zhang J., Li D., Yuan H., Wang S., Chen Y. // J. Fuel Chem. Technol. 2021. V. 49. № 12. P. 1752–1767. https://doi.org/10.1016/S1872-5813(21)60135-4
  29. Wojcik B.H. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 210–216. https://doi.org/10.1021/ie50458a007
  30. Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. New York: John Wiley & Sons, 2001. 664 p.
  31. Пономарев А.А. Синтезы и реакции фурановых веществ. Саратов: Изд-во Саратовского ун-та, 1960. 244 с.
  32. Бельский И.Ф., Шостаковский В.М. Катализ в химии фурана. М.: Наука, 1972. 230 с.
  33. Шиманская М.В., Юсковец Ж.Г., Стонкус В.В., Славинская В.А., Крейле Д.Р., Авотс А.А. Контактные реакции фурановых соединений. Рига: Зинатне, 1985. 301 с.
  34. Nakagawa Y., Tamura M., Tomishige K. // Catal. Surv. Asia. 2015. V. 19. № 4. P. 249–256. https://doi.org/10.1007/s10563-015-9194-2
  35. Tan J., Su Y., Gao K., Cui J., Wang Y., Zhao Y. // J. Fuel Chem. Technol. 2021. V. 49. № 6. P. 780–790. https://doi.org/10.1016/S1872-5813(21)60036-1
  36. Li C.-J., Chen L. // Chem. Soc. Rev. 2006. V. 35. № 1. P. 68–82. https://doi.org/10.1039/B507207G
  37. Mika L.T., Cséfalvay E., Horváth I.T. // Catal. Today. 2015. V. 247. P. 33–46. https://doi.org/10.1016/j.cattod.2014.10.043
  38. Kitanosono T., Masuda K., Xu P., Kobayashi S. // Chem. Rev. 2018. V. 118. № 2. P. 679–746. https://doi.org/10.1021/acs.chemrev.7b00417
  39. Zhao Z., Bababrik R., Xue W., Li Y., Briggs N.M., Ngu-yen D.-T., Nguyen U., Crossley S.P., Wang S., Wang B., Resasco D.E. // Nat. Catal. 2019. V. 2. № 5. P. 431–436. https://doi.org/10.1038/s41929-019-0257-z
  40. Siegel H., Eggersdorfer M. Ketones. In: Ullmann’s encyclopedia of industrial chemistry. V. 20. Weinheim: Wiley-VCH, 2012. P. 187–207. https://doi.org/10.1002/14356007.a15_077
  41. Kleemann A., Engel J., Kutscher B., Reichert D. Pharmaceutical substances: syntheses, patents and applications of the most relevant AIPs. Stuttgart: Georg Thieme Verlag, 2009. 1800 p. https://doi.org/10.1055/b-0035-108665
  42. Surburg H., Panten J. Common fragrance and flavor materials. Weinheim: Wiley-VCH, 2006. 318 p. https://doi.org/10.1002/3527608214
  43. Тарабанько В.Е., Смирнова М.А., Жижина Е.Г. // Катализ в промышленности. 2022. Т. 22. № 2. С. 5–17. https://doi.org/10.18412/1816-0387-2022-2-5-17
  44. Очнева В.А., Тростянецкая В.Л., Аленкин А.В., Силаева Н.А., Шаповалова Т.А., Тудоровский Э.Л. Способ получения 4,4′-азобис-(4-цианпентанола). Патент РФ № 2243212. 2004.
  45. Shaik R., Rao H.S.P. // Mini-Rev. Org. Chem. 2022. V. 19. № 1. P. 111–124. https://doi.org/10.2174/1570193X18666210204113412
  46. Mäki-Arvela P., Hájek J., Salmi T., Murzin D.Yu. // Appl. Catal. A: Gen. 2005. V. 292. P. 1–49. https://doi.org/10.1016/j.apcata.2005.05.045
  47. Zhang L., Zhou M., Wang A., Zhang T. // Chem. Rev. 2020. V. 120. № 2. P. 683–733. https://doi.org/10.1021/acs.chemrev.9b00230
  48. Luneau M., Lim J.S., Patel D.A., Sykes E.C.H., Friend C.M., Sautet P. // Chem. Rev. 2020. V. 120. № 23. P. 12834–12872. https://doi.org/10.1021/acs.chemrev.0c00582
  49. Стахеев А.Ю., Машковский И.С., Баева Г.Н., Телеги-на Н.С. // Рос. хим. журн. 2009. Т. 53. № 2. С. 68–78.
  50. Industrial catalytic processes for fine and specialty chemicals. Joshi S.S., Ranade V.V. (Eds.). Amsterdam: Elsevier, 2016. 756 p. https://doi.org/10.1016/C2013-0-18518-2
  51. Serp P., Machado B. Nanostructured carbon materials for catalysis. Cambridge: The Royal Society of Chemistry, 2015. 555 p. https://doi.org/10.1039/9781782622567
  52. Mao Z., Gu H., Lin X. // Catalysts. 2021. V. 11. № 9. Article 1078. https://doi.org/10.3390/catal11091078
  53. Аль-Вадхав Х.А. // Вестн. МИТХТ. 2012. Т. 7. № 1. С. 3–18.
  54. Van Vaerenbergh B., Lauwaert J., Vermeir P., De Clercq J., Thybaut J.W. // Adv. Catal. 2019. V. 65. P. 1‒120. https://doi.org/10.1016/bs.acat.2019.10.001
  55. Семиколенов В.А. // Успехи химии. 1992. Т. 61. № 2. С. 320–331. https://doi.org/10.1070/RC1992v061n02ABEH000938
  56. Gerber I.C., Serp P. // Chem. Rev. 2020. V. 120. № 2. P. 1250‒1349. https://doi.org/10.1021/acs.chemrev.9b00209
  57. Zhu J., Holmen A., Chen D. // ChemCatChem. 2013. V. 5. № 2. P. 378–401. https://doi.org/10.1002/cctc.201200471
  58. Su D.S. Carbon nanotubes and related carbonaceous structures. In: Nanomaterials in Catalysis. Serp P., Philippot K. (Eds.). Weinheim: Wiley-VCH, 2013. P. 331–374. https://doi.org/10.1002/9783527656875.ch9
  59. Мироненко Р.М., Бельская О.Б., Лихолобов В.А. // Химия твердого топлива. 2020. № 6. С. 23‒28. https://doi.org/10.31857/S0023117720060080
  60. Мироненко Р.М., Лихолобов В.А., Бельская О.Б. // Успехи химии. 2022. Т. 91. № 1. Статья № RCR5017. https://doi.org/10.1070/RCR5017
  61. Vogler C.O., Voll M. Carbon black. In: Industrial carbon and graphite materials: raw materials, production and applications. V. 2. Jäger H., Frohs W. (Eds.). Weinheim: Wiley-VCH, 2021. P. 533–601. https://doi.org/10.1002/9783527674046.ch10
  62. Гюльмисарян Т.Г., Капустин В.М., Левенберг И.П. Технический углерод: морфология, свойства, производство. М.: Каучук и резина, 2017. 586 с.
  63. Khodabakhshi S., Fulvio P.F., Andreoli E. // Carbon. 2020. V. 162. P. 604‒649. https://doi.org/10.1016/j.carbon.2020.02.058
  64. Mironenko R.M., Belskaya O.B., Gulyaeva T.I., Nizovskii A.I., Kalinkin A.V., Bukhtiyarov V.I., Lavre-nov A.V., Likholobov V.A. // Catal. Today. 2015. V. 249. P. 145–152. https://doi.org/10.1016/j.cattod.2014.10.037
  65. Mironenko R.M., Belskaya O.B. // AIP Conf. Proc. 2019. V. 2141. № 1. Article 020010. https://doi.org/10.1063/1.5122029
  66. Maccarrone M.J., Lederhos C.R., Torres G., Betti C., Coloma-Pascual F., Quiroga M.E., Yori J.C. // Appl. Catal. A: Gen. 2012. V. 441–442. P. 90–98. https://doi.org/10.1016/j.apcata.2012.07.016
  67. Hronec M., Fulajtarová K. // Catal. Commun. 2012. V. 24. P. 100–104. https://doi.org/10.1016/j.catcom.2012.03.020
  68. Hronec M., Fulajtarová K., Liptaj T. // Appl. Catal. A: Gen. 2012. V. 437–438. P. 104–111. https://doi.org/10.1016/j.apcata.2012.06.018
  69. Hronec M., Fulajtárová K., Vávra I., Soták T., Dobročka E., Mičušík M. // Appl. Catal. B: Environ. 2016. V. 181. P. 210–219. https://doi.org/10.1016/j.apcatb.2015.07.046
  70. Yang Y., Du Z., Huang Y., Lu F., Wang F., Gao J., Xu J. // Green Chem. 2013. V. 15. № 7. P. 1932–1940. https://doi.org/10.1039/c3gc37133f
  71. Antunes M.M., Lima S., Fernandes A., Ribeiro M.F., Chadwick D., Hellgardt K., Pillinger M., Valente A.A. // Appl. Catal. B: Environ. 2018. V. 237. P. 521–537. https://doi.org/10.1016/j.apcatb.2018.06.004
  72. Liu F., Liu Q., Xu J., Li L., Cui Y.-T., Lang R., Li L., Su Y., Miao S., Sun H., Qiao B., Wang A., Jérôme F., Zhang T. // Green Chem. 2018. V. 20. № 8. P. 1770–1776. https://doi.org/10.1039/c8gc00039e
  73. Verrier C., Moebs-Sanchez S., Queneau Y., Popowycz F. // Org. Biomol. Chem. 2018. V. 16. № 5. P. 676–687. https://doi.org/10.1039/c7ob02962d
  74. Mironenko R.M., Belskaya O.B., Talsi V.P., Likholo-bov V.A. // J. Catal. 2020. V. 389. P. 721‒734. https://doi.org/10.1016/j.jcat.2020.07.013
  75. Shangguan J., Chin Y.-H. // ACS Catal. 2019. V. 9. № 3. P. 1763–1778. https://doi.org/10.1021/acscatal.8b03470
  76. Mironenko R.M., Talsi V.P., Gulyaeva T.I., Trenikhin M.V., Belskaya O.B. // React. Kinet. Mech. Catal. 2019. V. 126. № 2. P. 811‒827. https://doi.org/10.1007/s11144-018-1505-y
  77. Sharma G., Kumar A., Sharma S., Naushad Mu., Dwivedi R.P., ALOthman Z.A., Mola G.T. // J. King Saud Univ. Sci. 2019. V. 31. № 2. P. 257–269. https://doi.org/10.1016/j.jksus.2017.06.012
  78. Loza K., Heggen M., Epple M. // Adv. Funct. Mater. 2020. V. 30. № 21. Article 1909260. https://doi.org/10.1002/adfm.201909260
  79. Fan J., Du H., Zhao Y., Wang Q., Liu Y., Li D., Feng J. // ACS Catal. 2020. V. 10. № 22. P. 13560–13583. https://doi.org/10.1021/acscatal.0c03280
  80. Singh S.K. // Asian J. Org. Chem. 2018. V. 7. № 10. P. 1901–1923. https://doi.org/10.1002/ajoc.201800307
  81. Wu D., Kusada K., Kitagawa H. // Sci. Technol. Adv. Mater. 2016. V. 17. № 1. P. 583–596. https://doi.org/10.1080/14686996.2016.1221727
  82. Huang C., Yang X., Yang H., Huang P., Song H., Liao S. // Appl. Surf. Sci. 2014. V. 315. P. 138‒143. https://doi.org/10.1016/j.apsusc.2014.07.011
  83. Chen J., Liu X., Zhang F. // Chem. Eng. J. 2015. V. 259. P. 43–52. https://doi.org/10.1016/j.cej.2014.07.049
  84. Suppino R.S., Landers R., Cobo A.J.G. // Appl. Catal. A: Gen. 2016. V. 525. P. 41–49. https://doi.org/10.1016/j.apcata.2016.06.038
  85. Zhang J., Gao K., Wang S., Li W., Han Y. // RSC Adv. 2017. V. 7. № 11. P. 6447–6456. https://doi.org/10.1039/c6ra26142f
  86. Zhu T., Yang M., Chen X., Dong Y., Zhang Z., Cheng H. // J. Catal. 2019. V. 378. P. 382–391. https://doi.org/10.1016/j.jcat.2019.08.032
  87. Мироненко Р.М., Бельская О.Б., Лавренов А.В., Лихолобов В.А. // Изв. АН. Сер. хим. 2017. № 4. С. 673–676.
  88. Мироненко Р.М., Бельская О.Б., Лавренов А.В., Лихолобов В.А. // Кинетика и катализ. 2018. Т. 59. № 3. С. 347–354. https://doi.org/10.7868/S0453881118030140
  89. Gallezot P., Richard D. // Catal. Rev. Sci. Eng. 1998. V. 40. № 1–2. P. 81–126. https://doi.org/10.1080/01614949808007106
  90. Coq B., Figueras F. // J. Mol. Catal. A: Chem. 2001. V. 173. № 1–2. P. 117‒134. https://doi.org/10.1016/S1381-1169(01)00148-0
  91. Lee J., Xu Y., Huber G.W. // Appl. Catal. B: Environ. 2013. V. 140–141. P. 98–107. https://doi.org/10.1016/j.apcatb.2013.03.031
  92. Li H., Zhao Y., Gao C., Wang Y., Sun Z., Liang X. // Chem. Eng. J. 2012. V. 181–182. P. 501–507. https://doi.org/10.1016/j.cej.2011.06.029
  93. Huo J., Johnson R.L., Duan P., Pham H.N., Mendivelso-Perez D., Smith E.A., Datye A.K., Schmidt-Rohr K., Shanks B.H. // Catal. Sci. Technol. 2018. V. 8. № 4. P. 1151–1160. https://doi.org/10.1039/C7CY02098H
  94. Ravenelle R.M., Copeland J.R., Kim W.-G., Crittenden J.C., Sievers C. // ACS Catal. 2011. V. 1. № 5. P. 552–561. https://doi.org/10.1021/cs1001515
  95. Mironenko R.M., Belskaya O.B., Talsi V.P., Gulyaeva T.I., Kazakov M.O., Nizovskii A.I., Kalinkin A.V., Bukhtiya-rov V.I., Lavrenov A.V., Likholobov V.A. // Appl. Catal. A: Gen. 2014. V. 469. P. 472–482. https://doi.org/10.1016/j.apcata.2013.10.027
  96. Salnikova K.E., Matveeva V.G., Larichev Yu.V., Bykov A.V., Demidenko G.N., Shkileva I.P., Sulman M.G. // Catal. Today. 2019. V. 329. P. 142–148. https://doi.org/10.1016/j.cattod.2018.12.036
  97. Zhang M., Yang J.-H. // ChemistrySelect. 2022. V. 7. № 9. Article e202200013. https://doi.org/10.1002/slct.202200013
  98. Ramirez-Barria C., Isaacs M., Wilson K., Guerrero-Ruiz A., Rodríguez-Ramos I. // Appl. Catal. A: Gen. 2018. V. 563. P. 177–184. https://doi.org/10.1016/j.apcata.2018.07.010
  99. Zhang J., Wu D. // Mater. Chem. Phys. 2021. V. 260. Article 124152. https://doi.org/10.1016/j.matchemphys.2020.124152
  100. Aldosari O.F., Iqbal S., Miedziak P.J., Brett G.L., Jones D.R., Liu X., Edwards J.K., Morgan D.J., Knight D.K., Hutchings G.J. // Catal. Sci. Technol. 2016. V. 6. № 1. P. 234–242. https://doi.org/10.1039/C5CY01650A
  101. Bhogeswararao S., Srinivas D. // J. Catal. 2015. V. 327. P. 65–77. https://doi.org/10.1016/j.jcat.2015.04.018
  102. Nakagawa Y., Takada K., Tamura M., Tomishige K. // ACS Catal. 2014. V. 4. № 8. P. 2718–2726. https://doi.org/10.1021/cs500620b
  103. Tamura M., Tokonami K., Nakagawa Y., Tomishige K. // Chem. Commun. 2013. V. 49. № 63. P. 7034–7036. https://doi.org/10.1039/C3CC41526K
  104. Chen J., Lu F., Zhang J., Yu W., Wang F., Gao J., Xu J. // ChemCatChem. 2013. V. 5. № 10. P. 2822–2826. https://doi.org/10.1002/cctc.201300316
  105. Nakagawa Y., Tamura M., Tomishige K. // J. Jpn. Pet. Inst. 2017. V. 60. № 1. P. 1–9. https://doi.org/10.1627/jpi.60.1
  106. Salnikova K.E., Larichev Yu.V., Sulman E.M., Bykov A.V., Sidorov A.I., Demidenko G.N., Sulman M.G., Bron-stein L.M., Matveeva V.G. // ChemPlusChem. 2020. V. 85. № 8. P. 1697–1703. https://doi.org/10.1002/cplu.202000383
  107. Belskaya O.B., Zaikovskii V.I., Gulyaeva T.I., Talsi V.P., Trubina S.V., Kvashnina K.O., Nizovskii A.I., Kalinkin A.V., Bukhtiyarov V.I., Likholobov V.A. // J. Catal. 2020. V. 392. P. 108–118. https://doi.org/10.1016/j.jcat.2020.09.021
  108. Lesiak M., Binczarski M., Karski S., Maniukiewicz W., Rogowski J., Szubiakiewicz E., Berlowska J., Dziugan P., Witońska I. // J. Mol. Catal. A: Chem. 2014. V. 395. P. 337–348. https://doi.org/10.1016/j.molcata.2014.08.041
  109. Lee J., Kim Y.T., Huber G.W. // Green Chem. 2014. V. 16. № 2. P. 708–718. https://doi.org/10.1039/c3gc41071d
  110. Fulajtárova K., Soták T., Hronec M., Vávra I., Dobročka E., Omastová M. // Appl. Catal. A: Gen. 2015. V. 502. P. 78–85. https://doi.org/10.1016/j.apcata.2015.05.031
  111. Liu L., Lou H., Chen M. // Int. J. Hydrogen Energy. 2016. V. 41. № 33. P. 14721–14731. https://doi.org/10.1016/j.ijhydene.2016.05.188
  112. Zhang X., Wang T., Ma L., Wu C. // Fuel. 2010. V. 89. № 10. P. 2697–2702. https://doi.org/10.1016/j.fuel.2010.05.043
  113. Yang Y., Ma J., Jia X., Du Z., Duan Y., Xu J. // RSC Adv. 2016. V. 6. № 56. P. 51221–51228. https://doi.org/10.1039/C6RA05680F
  114. Belskaya O.B., Mironenko R.M., Gulyaeva T.I., Trenikhin M.V., Muromtsev I.V., Trubina S.V., Zvereva V.V., Likholobov V.A. // Catalysts. 2022. V. 12. № 6. Article 598. https://doi.org/10.3390/catal12060598
  115. Stepanova L.N., Belskaya O.B., Leont’eva N.N., Kob-zar E.O., Salanov A.N., Gulyaeva T.I., Trenikhin M.V., Likholobov V.A. // Mater. Chem. Phys. 2021. V. 263. Article 124091. https://doi.org/10.1016/j.matchemphys.2020.124091
  116. Kobzar E.O., Stepanova L.N., Leont’eva N.N., Bel-skaya O.B. // AIP Conf. Proc. 2020. V. 2301. № 1. Article 030010. https://doi.org/10.1063/5.0032858
  117. Ma Y., Xu G., Wang H., Wang Y., Zhang Y., Fu Y. // ACS Catal. 2018. V. 8. № 2. P. 1268–1277. https://doi.org/10.1021/acscatal.7b03470
  118. Li H., Chai W.-M., Luo H.-S., Li H.-X. // Chin. J. Chem. 2006. V. 24. № 12. P. 1704–1708. https://doi.org/10.1002/cjoc.200690319
  119. Бельская О.Б., Лихолобов В.А. // Кинетика и катализ. 2022. Т. 63. № 6. С. 695–723. https://doi.org/10.31857/S0453881122060016
  120. Stepanova L.N., Mironenko R.M., Kobzar E.O., Leont’-eva N.N., Gulyaeva T.I., Vasilevich A.V., Serkova A.N., Salanov A.N., Lavrenov A.V. // Eng. 2022. V. 3. № 4. P. 400–411. https://doi.org/10.3390/eng3040029
  121. Villaverde M.M., Bertero N.M., Garetto T.F., Mar-chi A.J. // Catal. Today. 2013. V. 213. P. 87–92. https://doi.org/10.1016/j.cattod.2013.02.031
  122. Gong W., Chen C., Zhang Y., Zhou H., Wang H., Zhang H., Zhang Y., Wang G., Zhao H. // ACS Sustainable Chem. Eng. 2017. V. 5. № 3. P. 2172–2180. https://doi.org/10.1021/acssuschemeng.6b02343
  123. Sitthisa S., Sooknoi T., Ma Y., Balbuena P.B., Resas-co D.E. // J. Catal. 2011. V. 277. № 1. P. 1–13. https://doi.org/10.1016/j.jcat.2010.10.005
  124. Yan K., Chen A. // Fuel. 2014. V. 115. P. 101–108. https://doi.org/10.1016/j.fuel.2013.06.042
  125. Wang Y., Zhu W., Sang S., Gao L., Xiao G. // Asia-Pac. J. Chem. Eng. 2017. V. 12. № 3. P. 422–431. https://doi.org/10.1002/apj.2085
  126. Guo J., Xu G., Han Z., Zhang Y., Fu Y., Guo Q. // ACS Sustainable Chem. Eng. 2014. V. 2. № 10. P. 2259–2266. https://doi.org/10.1021/sc5003566
  127. Li X.-L., Deng J., Shi J., Pan T., Yu C.-G., Xu H.-J., Fu Y. // Green Chem. 2015. V. 17. № 2. P. 1038–1046. https://doi.org/10.1039/C4GC01601G

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (81KB)
3.

Baixar (18KB)
4.

Baixar (174KB)
5.

Baixar (297KB)
6.

Baixar (33KB)
7.

Baixar (85KB)
8.

Baixar (342KB)
9.

Baixar (163KB)
10.

Baixar (196KB)
11.

Baixar (195KB)
12.

Baixar (29KB)
13.

Baixar (139KB)
14.

Baixar (171KB)

Declaração de direitos autorais © Р.М. Мироненко, О.Б. Бельская, В.А. Лихолобов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies