AMINO DERIVATIVES OF ACRIDINE: SYNTHESIS, STUDY OF ANTICHOLINESTERASE AND ANTIOXIDANT ACTIVITIES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A simple and accessible approach to the synthesis of new amine derivatives of acridine based on the direct C–H functionalization methodology was developed. The inhibitory effect of the synthesized compounds on cholinesterases and carboxylesterases, as well as their antioxidant activity, was studied. A moderate inhibition of BChE by the morpholine and pyrazole derivatives of acridine and a high anti-BChE activity of the N-methyl-piperazine one were shown.

Sobre autores

A. Shchepochkin

Institute of Organic Synthesis named by I.Y. Postovsky, Ural branch of the Russian Academy of Sciences; Ural Federal University named by the first President of Russia B.N. Yeltsin

Autor responsável pela correspondência
Email: avs@ios.uran.ru
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

A. Uglova

Institute of Organic Synthesis named by I.Y. Postovsky, Ural branch of the Russian Academy of Sciences; Ural Federal University named by the first President of Russia B.N. Yeltsin

Email: avs@ios.uran.ru
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

I. Utepova

Institute of Organic Synthesis named by I.Y. Postovsky, Ural branch of the Russian Academy of Sciences; Ural Federal University named by the first President of Russia B.N. Yeltsin

Email: avs@ios.uran.ru
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

E. Gradoblyanskaya

Ural Federal University named by the first President of Russia B.N. Yeltsin

Email: avs@ios.uran.ru
Russian, 620002, Yekaterinburg

M. Averkov

Institute of Organic Synthesis named by I.Y. Postovsky, Ural branch of the Russian Academy of Sciences; Ural Federal University named by the first President of Russia B.N. Yeltsin

Email: avs@ios.uran.ru
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

N. Kovaleva

Institute of Physiologically Active Substances of the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: avs@ios.uran.ru
Russian, 142432, Chernogolovka

E. Rudakova

Institute of Physiologically Active Substances of the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: avs@ios.uran.ru
Russian, 142432, Chernogolovka

N. Boltneva

Institute of Physiologically Active Substances of the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: avs@ios.uran.ru
Russian, 142432, Chernogolovka

O. Serebryakova

Institute of Physiologically Active Substances of the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: avs@ios.uran.ru
Russian, 142432, Chernogolovka

G. Makhaeva

Institute of Physiologically Active Substances of the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: avs@ios.uran.ru
Russian, 142432, Chernogolovka

V. Charushin

Institute of Organic Synthesis named by I.Y. Postovsky, Ural branch of the Russian Academy of Sciences; Ural Federal University named by the first President of Russia B.N. Yeltsin

Email: avs@ios.uran.ru
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

O. Chupakhin

Institute of Organic Synthesis named by I.Y. Postovsky, Ural branch of the Russian Academy of Sciences; Ural Federal University named by the first President of Russia B.N. Yeltsin

Email: avs@ios.uran.ru
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

Bibliografia

  1. Wainwright M. // J. Antimicrob. Chemother. 2001. V. 47. № 1. P. 1–13. https://doi.org/10.1093/jac/47.1.1
  2. Girault S., Grellier P., Berecibar A., Maes L., Mouray E., Lemiere P., Debreu M.-A., Davioud-Charvet E., Sergheraert C. // J. Med. Chem. 2000. V. 43. P. 2646–2654. https://doi.org/10.1021/jm990946n
  3. Gamage S.A., Figgitt D.P., Wojcik S.J., Ralph R.K., Ransijn A., Mauel J., Yardley V., Snowdon D., Croft S.L., Denny W.A. // J. Med. Chem. 1997. V. 40. № 16. P. 2634–2642. https://doi.org/10.1021/jm970232h
  4. Suveyzdis Ya., Lyakhov S.A., Litvinova L.A., Rybalko S.L., Dyadyun S.T. // Pharm. Chem. J. 2000. V. 34. P. 528–529. https://doi.org/10.1023/A:1010303112897
  5. Prasher P., Sharma M. // Med.Chem.Commun. 2018. V. 9. P. 1589–1618. https://doi.org/10.1039/C8MD00384J
  6. Denny W. // Curr. Med. Chem. 2002. V. 9. P. 1655–1665. https://doi.org/10.2174/0929867023369277
  7. Mangueira V.M., de Sousa T.K.G., Batista T.M., de Abrantes R.A., Moura A.P.G., Ferreira R.C., de Almeida R.N., Braga R.M., Leite F.C., de P. Medeiros K.C., Cavalcanti M.A.T., Moura R.O., Silvestre G.F.G., Bati-sta L.M., Sobral M.V. // Front. Pharmacol. 2022. V. 13. 963736.https://doi.org/10.3389/fphar.2022.963736
  8. Korth C., May B.C.H., Cohen F.E., Prusiner S.B. // Proc. Nat. Acad. Sci. 2001. V. 98. № 17. P. 9836–9841. https://doi.org/10.1073/pnas.161274798
  9. Collinge J., Gorham M., Hudson F., Kennedy A., Keogh G., Pal S., Rossor M., Rudge P., Siddique D., Spyer M., Thomas D., Walker S., Webb T., Wroe S., Darbyshir J. // Lancet Neurol. 2009. V. 8. № 4. P. 334–344. https://doi.org/10.1016/S1474-4422(09)70049-3
  10. Sondhi S., Singh J., Rani R., Gupta P.P., Agrawal S.K., Saxena A.K. // Eur. J. Med. Chem. 2010. V. 45. P. 555–563. https://doi.org/10.1016/j.ejmech.2009.10.042
  11. Mallu L., Thirumalai D., Asharani I.V. // Chem. Biol. Drug. Des. 2017. V. 90. № 4. P. 520–526. https://doi.org/10.1111/cbdd.12973
  12. Tseng H.-J., Lin M.-H., Shiao Y.-J., Yang Y.-C., Chu J.-C., Chen C.-Y., Chen Y.-Y., Lin T. E., Su C.-J., Pan S.-L., Chen L.-C., Wang C.-Y., Hsu K.-C., Huang W.-J. // Eur. J. Med. Chem. 2020. V. 192. P. 112193. https://doi.org/10.1016/j.ejmech.2020.112193
  13. Makhaeva G.F., Lushchekina S.V., Boltneva N.P., Serebryakova O.G., Rudakova E.V., Ustyugov A.A., Bachu-rin S.O., Shchepochkin A.V., Chupakhin O.N., Charu-shin V.N., Richardson R.J. // Bioorg. Med. Chem. 2017. V. 25. № 21. P. 5981–5994. https://doi.org/10.1016/j.bmc.2017.09.028
  14. Hamulakova S., Imrich J., Janovec L., Kristian P., Danihel I., Holas O., Pohanka M., Böhm S., Kozurkova M., Kuca K. // Int. J. Biol. Macromol. 2014. V. 70. P. 435–439. https://doi.org/10.1016/j.ijbiomac.2014.06.064
  15. Kozurkova M., Sabolova D., Kristian P. // J. Appl. Toxicol. 2021. V. 41. P. 175–189. https://doi.org/10.1002/jat.4072
  16. Lang X., Li L., Chen Y., Sun Q., Wu Q., Liu F., Tan C., Liu H., Gao C., Jiang Y. // Bioorg. Med. Chem. 2013. V. 21. № 14. P. 4170–4177. https://doi.org/10.1016/j.bmc.2013.05.008
  17. Song D., Zhang N., Zhang P., Zhang N., Chen W., Zhang L., Guo T., Gu X., Ma S. // Eur. J. Med. Chem. 2021. V. 221. P. 113480. https://doi.org/10.1016/j.ejmech.2021.113480
  18. Charushin V.N., Chupakhin O.N. // Russ. Chem. Bull. 2019. V. 68. P. 453–471. https://doi.org/10.1007/s11172-019-2441-3
  19. Akulov A.A., Varaksin M.V., Charushin V.N., Chupa-khin O.N. // Russ. Chem. Rev. 2021. V. 90. № 3. P. 374–394. https://doi.org/10.1070/RCR4978
  20. Davies H.M.L., Morton D. // Angew. Chem., Int. Ed. 2014. V. 53. № 39. P. 10256–10258. https://doi.org/10.1002/anie.201406633
  21. Shchepochkin A.V., Antipin F.V., Charushin V.N., Chupakhin O.N. // Doklady Chemistry. 2021. V. 499. № 1. P. 123–157. https://doi.org/10.31857/S2686953521040087
  22. Bugaenko D.I., Karchava A.V., Yurovskaya M.A. // Russ. Chem. Rev. 2022. V. 91. № 6. RCR5022. https://doi.org/10.1070/RCR5022
  23. Borovlev I.V., Demidov O.P., Amangasieva G.A., Avakyan E.K. // Tetrahedron Lett. 2016. V. 57. № 32. P. 3608–3611. https://doi.org/10.1016/j.tetlet.2016.06.103
  24. Demidov O.P., Borovlev I.V., Amangasieva G.A., Avakyan E.K. // Chem. Heterocycl. Compd. 2016. V. 52. № 2. P. 104–109. https://doi.org/10.1007/s10593-016-1841-7
  25. Koshima H. // Mol. Cryst. and Liq. Cryst. 2001. V. 356. P. 483–486. https://doi.org/10.1080/10587250108023726
  26. Zeghada S., Bentabed-Ababsa G., Mongin O., Erb W., Picot L., Thiéry V., Roisnel T., Dorcet V., Mongin F. // Tetrahedron. 2020. V. 76. 131435. https://doi.org/10.1016/j.tet.2020.131435
  27. Chupakhin O.N., Charushin V.N. // Pure Appl. Chem. 2017. V. 89. № 8. P. 1195–1208. https://doi.org/10.1515/pac-2017-0108
  28. Chupakhin O.N., Charushin V.N. // Tetrahedron Lett. 2016. V. 57. № 25. P. 2665–2672. https://doi.org/10.1016/j.tetlet.2016.04.084
  29. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. // Free Radic. Biol. Med. 1999. V. 26. P. 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  30. Benzie I.F.F., Strain J.J. // Methods Enzymol. 1999. V. 299. P. 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5
  31. Makhaeva G.F., Kovaleva N.V., Rudakova E.V., Boltne-va N.P., Lushchekina S.V., Faingold I.I., Poletaeva D.A., Soldatova Y.V., Kotelnikova R.A., Serkov I.V., Ustinov A.K., Proshin A.N., Radchenko E.V., Palyulin V.A., Richardson R.J. // Molecules. 2020. V. 25. P. 5891–5911. https://doi.org/10.3390/molecules25245891

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (12KB)
3.

Baixar (48KB)
4.

Baixar (56KB)

Declaração de direitos autorais © А.В. Щепочкин, А.Ф. Углова, И.А. Утепова, Е.С. Градоблянская, М.А. Аверков, Н.В. Ковалёва, Е.В. Рудакова, Н.П. Болтнева, О.Г. Серебрякова, Г.Ф. Махаева, В.Н. Чарушин, О.Н. Чупахин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies