AMMONIUM AMPHIPHILES BASED ON NATURAL COMPOUNDS: DESIGN, SYNTHESIS, PROPERTIES AND BIOMEDICAL APPLICATIONS. A REVIEW

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review analyzes and systematizes data for the last three years on the use of amphiphilic quaternary ammonium compounds (QAC) based on natural structures in the search for new antibacterial and anticancer agents. As part of the analysis, publications on the properties of QAC based on heterocyclic and pyridine alkaloids, alkylated phenols, terpenoids, and steroids were considered. Attempts have been made to reveal the relationship between the structure of ammonium salts and their supramolecular self-organization, biological activity, and cytotoxicity. From the point of view of ease of chemical modification, availability, biorelevance and effectiveness against pathogen bacterial strains and antitumor activity, prospects for the use of natural platforms for extended trials have been identified.

About the authors

T. N. Pashirova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: abogdanov@inbox.ru
Russian, 420088, Kazan

Z. M. Shaikhutdinova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: abogdanov@inbox.ru
Russian, 420088, Kazan

V. F. Mironov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: abogdanov@inbox.ru
Russian, 420088, Kazan

A. V. Bogdanov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: abogdanov@inbox.ru
Russian, 420088, Kazan

References

  1. Curreri A.M., Mitragotri S., Tanner E.E.L. // Adv. Sci. 2021. V. 8. № 17. Art. № 2004819. https://doi.org/10.1002/advs.202004819
  2. Nikfarjam N., Ghomi M., Agarwal T., Hassanpour M., Sharifi E., Khorsandi D., Ali Khan M., Rossi F., Rossetti A., Nazarzadeh Zare E., Rabiee N., Afshar D., Vosough M., Kumar Maiti T., Mattoli V., Lichtfouse E., Tay F.R., Makvandi P. // Adv. Funct. Mater. 2021. V. 31. № 42. Art. № 2104148. https://doi.org/10.1002/adfm.202104148
  3. Bureš F. // Top. Curr. Chem. 2019. V. 377. № 3. Art. № 14. https://doi.org/10.1007/s41061-019-0239-2
  4. Obłąk E., Futoma-Kołoch B., Wieczyńska A. // World J. Microbiol. Biotechnol. 2021. V. 37. № 22. Art. № 22. https://doi.org/10.1007/s11274-020-02978-0
  5. Mahoney A.R., Safaee M.M., Wuest W.M., Furst A.L. // iScience. 2021. V. 24. № 4. Art. № 102304. https://doi.org/10.1016/j.isci.2021.102304
  6. Kwasniewska D., Chen Y.-L., Wieczorek D. // Pathogens. 2020. V. 9. № 6. Art. № 459. https://doi.org/10.3390/pathogens9060459
  7. Yang Z., Yuan Q., Li X., Hu A, Yu S. // Inter. J. Sci. 2022. V. 9. № 2. P. 152–158.
  8. Sharma V.D., Aifuwa E.O., Heiney P.A., Ilies M.A. // Biomaterials. 2013. V. 34. № 28. P. 6906–6921. https://doi.org/10.1016/j.biomaterials.2013.05.029
  9. Osimitz T.G., Droege W. // Toxicol. Res. Appl. 2021. V. 5. P. 1–16.https://doi.org/10.1177/23978473211049085
  10. Xie X., Cong W., Zhao F., Li H., Xin W., Hou G., Wang C. // J. Enzyme Inhib. Med. Chem. 2018. V. 33. № 1. P. 98–105. https://doi.org/10.1080/14756366.2017.1396456
  11. Zheng L., Li J., Yu M., Jia W., Duan S., Cao D., Ding X., Yu B., Zhang X., Xu F.-J. // J. Am. Chem. Soc. 2020. V. 142. № 47. P. 20257–20269. https://doi.org/10.1021/jacs.0c10771
  12. Schrank C.L., Wilt I.K., Monteagudo Ortiz C., Haney B.A., Wuest W.M. // RSC Med. Chem. 2021. V. 12. № 8. P. 1312–1324. https://doi.org/10.1039/D1MD00151E
  13. Jennings M.C., Minbiole K.P.C., Wuest W.M. // ACS Infect. Dis. 2015. V. 1. № 7. P. 288–303. https://doi.org/10.1021/acsinfecdis.5b00047
  14. Hoque J., Konai M.M., Samaddar S., Gonuguntala S., Manjunath G.B., Ghosh C., Haldar J. // Chem. Commun. 2015. V. 51. № 71. P. 13670–13673. https://doi.org/10.1039/C5CC05159B
  15. Ahmady A.R., Hosseinzadeh P., Solouk A., Akbari S., Szulc A.M., Brycki B.E. // Adv. Colloid Interface Sci. 2022. V. 299. № 2022. Art. № 102581. https://doi.org/10.1016/j.cis.2021.102581
  16. Zhang S., Ding S., Yu J., Chen X., Lei Q., Fang W. // Langmuir. 2015. V. 31. № 44. P. 12161–12169. https://doi.org/10.1021/acs.langmuir.5b01430
  17. Oblak E., Piecuch A., Rewak-Soroczynska J., Paluch E. // Appl. Microbiol. Biotechnol. 2019. V. 103. № 2. P. 625–632. https://doi.org/10.1007/s00253-018-9523-2
  18. Zhou X., Liu M., Han J., Wang L., Xiao Z., Zhu W.-H. // Ind. Eng. Chem. Res. 2022. V. 61. № 12. P. 4202–4211. https://doi.org/10.1021/acs.iecr.2c00129
  19. Sikora K., Nowacki A., Szweda P., Woziwodzka A., Bartoszewska S., Piosik J., Dmochowska B. // Molecules. 2022. V. 27. № 3. Art. № 757. https://doi.org/10.3390/molecules27030757
  20. Zhang X., Kong H., Zhang X., Jia H., Ma X., Miao H., Mu Y., Zhang G. // Green Chem. 2021. V. 23. № 17. P. 6548–6554. https://doi.org/10.1039/D1GC01525G
  21. Gilbert E.A., Guastavino J.F., Nicollier R.A., Lancelle M.V., Russell-White K., Murguia M.C. // J. Oleo Sci. 2021. V. 70. № 1. P. 59–65. https://doi.org/10.5650/jos.ess20216
  22. Perez L., Pons R., Oliveira de Sousa F.F., Moran M. del C., Ramos da Silva A., Pinazo A. // J. Mol. Liq. 2021. V. 339. Art. № 116819. https://doi.org/10.1016/j.molliq.2021.116819
  23. Perinelli D.R., Petrelli D., Vitali L.A., Vllasaliu D., Cespi M., Giorgioni G., Elmowafy E., Bonacucina G., Palmieri G.F. // J. Mol. Liq. 2019. V. 283. P. 249–256. https://doi.org/10.1016/j.molliq.2019.03.083
  24. Andreeva O.V., Garifullin B.F., Zarubaev V.V., Slita A.V., Yesaulkova I.L., Volobueva A.S., Belenok M.G., Man’kova M.A., Saifina L.F., Shulaeva M.M., Voloshi-na A.D., Lyubina A.P., Semenov V.E., Kataev V.E. // Molecules. 2021. V. 26. № 12. Art. № 3678. https://doi.org/10.3390/molecules26123678
  25. Chowdhury S., Rakshit A., Acharjee A., Saha B. // J. Mol. Liq. 2021. V. 324. Art. № 115105. https://doi.org/10.1016/j.molliq.2020.115105
  26. Kaczmarek D.K., Rzemieniecki T., Gwiazdowska D., Kleiber T., Praczyk T., Pernak J. // J. Mol. Liq. 2021. V. 327. Art. № 114792. https://doi.org/10.1016/j.molliq.2020.114792
  27. Kaczmarek D.K., Kleiber T., Wenping L., Niemczak M., Chrzanowski Ł., Pernak J. // ACS Sustain. Chem. Eng. 2020. V. 8. № 3. P. 1591–1598. https://doi.org/10.1021/acssuschemeng.9b06378
  28. Wang W., Zhu J., Tang G., Huo H., Zhang W., Liang Y., Dong H., Yang J., Cao Y. // New J. Chem. 2019. V. 43. № 2. P. 827–833. https://doi.org/10.1039/C8NJ05903A
  29. Grigoras A.G. // Environ. Chem. Lett. 2021. V. 19. № 4. P. 3009–3022. https://doi.org/10.1007/s10311-021-01215-w
  30. Makvandi P., Jamaledin R., Jabbari M., Nikfarjam N., Borzacchiello A. // Dent. Mater. 2018. V. 34. № 6. P. 851–867. https://doi.org/10.1016/j.dental.2018.03.014
  31. Zubris D., Minbiole K., Wuest W. // Curr. Top. Med. Chem. 2016. V. 17. № 3. P. 305–318. https://doi.org/10.2174/1568026616666160829155805
  32. Andreica B.-I., Cheng X., Marin L. // Eur. Polym. J. 2020. V. 139. Art. № 110016. https://doi.org/10.1016/j.eurpolymj.2020.110016
  33. Jiao Y., Niu L., Ma S., Li J., Tay F.R., Chen J. // Prog. Polym. Sci. 2017. V. 71. P. 53–90. https://doi.org/10.1016/j.progpolymsci.2017.03.001
  34. Martin F., Grkovic T., Sykes M.L., Shelper T., Avery V.M., Camp D., Quinn R.J., Davis R.A. // J. Nat. Prod. 2011. V. 74. № 11. P. 2425–2430. https://doi.org/10.1021/np200700f
  35. Joondan N., Caumul P., Jackson G., Jhaumeer Laul-loo S. // Chem. Phys. Lipids. 2021. V. 235. Art. № 105051. https://doi.org/10.1016/j.chemphyslip.2021.105051
  36. Sokolova A.S., Yarovaya O.I., Shernyukov A.V., Pokrovsky M.A., Pokrovsky A.G., Lavrinenko V.A., Zarubaev V.V., Tretiak T.S., Anfimov P.M., Kiselev O.I., Beklemishev A.B., Salakhutdinov N.F. // Bioorg. Med. Chem. 2013. V. 21. № 21. P. 6690–6698. https://doi.org/10.1016/j.bmc.2013.08.014
  37. Radman Kastelic A., Odzak R., Pezdirc I., Sovic K., Hrenar T., Cipak Gasparovic A., Skocibusic M., Primozic I. // Molecules. 2019. V. 24. № 14. Art. № 2675. https://doi.org/10.3390/molecules24142675
  38. Chauhan D.S., Quraishi M.A., Qurashi A. // J. Mol. Liq. 2021. V. 326. Art. № 115117. https://doi.org/10.1016/j.molliq.2020.115117
  39. Jayakumar J., Cheng C.-H. // J. Chinese Chem. Soc. 2018. V. 65. № 1. P. 11–23. https://doi.org/10.1002/jccs.201700062
  40. Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., Kuca K. // Bioorg. Med. Chem. Lett. 2014. V. 24. № 22. P. 5238–5241. https://doi.org/10.1016/j.bmcl.2014.09.060
  41. Soukup O., Benkova M., Dolezal R., Sleha R., Malinak D., Salajkova S., Markova A., Hympanova M., Prchal L., Ryskova L., Hobzova L., Sepcic K., Gunde-Cimerman N., Korabecny J., Jun D., Bostikova V., Bostik P., Marek J. // Eur. J. Med. Chem. 2020. V. 206. Art. № 112584. https://doi.org/10.1016/j.ejmech.2020.112584
  42. Zhou C., Wang Y. // Curr. Opin. Colloid Interface Sci. 2020. V. 45. P. 28–43. https://doi.org/10.1016/j.cocis.2019.11.009
  43. Buzoglu Kurnaz L., Luo Y., Yang X., Alabresm A., Leighton R., Kumar R., Hwang J., Decho A.W., Nagarkatti P., Nagarkatti M., Tang Ch. // Bioact. Mater. 2023. V. 20. P. 519–527. https://doi.org/10.1016/j.bioactmat.2022.06.009
  44. Drakontis C.E., Amin S. // Curr. Opin. Colloid Interface Sci. 2020. V. 48. P. 77–90. https://doi.org/10.1016/j.cocis.2020.03.013
  45. Bjerk T.R., Severino P., Jain S., Marques C., Silva A.M., Pashirova T., Souto E.B. // Bioengineering. 2021. V. 8. № 8. Art. № 115. https://doi.org/10.3390/bioengineering8080115
  46. Zhang W., Kaplan A.R., Davison E.K., Freeman J.L., Brimble M.A., Wuest W.M. // Nat. Prod. Rep. 2021. V. 38. № 5. P. 880–889. https://doi.org/10.1039/D0NP00052C
  47. Imperatore C., Aiello A., D’Aniello F., Senese M., Men-na M. // Molecules. 2014. V. 19. № 12. P. 20391–20423. https://doi.org/10.3390/molecules191220391
  48. Parmar V.S., Jain S.C., Bisht K.S., Jain R., Taneja P., Jha A., Tyagi O.D., Prasad A.K., Wengel J., Olsen C.E., Boll P.M. // Phytochemistry. 1997. V. 46. № 4. P. 597–673. https://doi.org/10.1016/S0031-9422(97)00328-2
  49. Tantawy A.H., Soliman K.A., Abd El-Lateef H.M. // J. Clean. Prod. 2020. V. 250. Art. № 119510. https://doi.org/10.1016/j.jclepro.2019.119510
  50. Tamaddon F., Azadi D. // J. Mol. Liq. 2018. V. 255. P. 406–412. https://doi.org/10.1016/j.molliq.2017.12.107
  51. Hajipour A.R., Heidari Y., Kozehgary G. // RSC Adv. 2015. V. 5. № 75. P. 61179–61183. https://doi.org/10.1039/C5RA08488A
  52. Tamaddon F., Azadi D. // J. Mol. Liq. 2018. V. 249. P. 789–794. https://doi.org/10.1016/j.molliq.2017.10.153
  53. Singh G., Kamboj R., Singh Mithu V., Chauhan V., Kaur T., Kaur G., Singh S., Singh Kang T. // J. Colloid Interface Sci. 2017. V. 496. P. 278–289. https://doi.org/10.1016/j.jcis.2017.02.021
  54. Rabbani G.H., Butler T., Knight J., Sanyal S.C., Alam K. // J. Infect. Dis. 1987. V. 155. № 5. P. 979–984. https://doi.org/10.1093/infdis/155.5.979
  55. Wu J., Ma J.-J., Liu B., Huang L., Sang X.-Q., Zhou L.-J. // J. Agric. Food Chem. 2017. V. 65. № 30. P. 6100–6113. https://doi.org/10.1021/acs.jafc.7b01259
  56. Habtemariam S. // Molecules. 2020. V. 25. № 6. Art. No. 1426. https://doi.org/10.3390/molecules25061426
  57. Zou K., Li Z., Zhang Y., Zhang H., Li B., Zhu W., Shi J., Jia Q., Li Y. // Acta Pharmacol. Sin. 2017. V. 38. № 2. P. 157–167. https://doi.org/10.1038/aps.2016.125
  58. Wang Z.-C., Wang J., Chen H., Tang J., Bian A.-W., Liu T., Yu L.-F., Yi Z., Yang F. // Bioorg. Med. Chem. Lett. 2020. V. 30. № 2. Art. № 126821. https://doi.org/10.1016/j.bmcl.2019.126821
  59. Huang S., Zhu B., Wang K., Yu M., Wang Z., Li Y., Liu Y., Zhang P., Li S., Li Y., Liu A.-L., Wang Q.-M. // Pest Manag. Sci. 2022. V. 78. № 5. P. 2011–2021. https://doi.org/10.1002/ps.6824
  60. Marois I., Cloutier A., Meunier I., Weingartl H.M., Cantin A.M., Richter M.V. // PLoS One. 2014. V. 9. № 10. e110631. https://doi.org/10.1371/journal.pone.0110631
  61. Baroni A., Paoletti I., Ruocco E., Ayala F., Corrado F., Wolf R., Tufano M.A., Donnarumma G. // J. Dermatol. Sci. 2007. V. 47. № 3. P. 253–255. https://doi.org/10.1016/j.jdermsci.2007.05.009
  62. Malakar S., Sreelatha L., Dechtawewat T., Noisakran S., Yenchitsomanus P., Chu J.J.H., Limjindaporn T. // Virus Res. 2018. V. 255. P. 171–178. https://doi.org/10.1016/j.virusres.2018.07.018
  63. Wang X., Zeng Y., Sheng L., Larson P., Liu X., Zou X., Wang S., Guo K., Ma C., Zhang G., Cui H., Ferguson D.M., Li Y., Zhang J., Aldrich C.C. // J. Med. Chem. 2019. V. 62. № 5. P. 2305–2332. https://doi.org/10.1021/acs.jmedchem.8b01353
  64. Baidya M., Horn M., Zipse H., Mayr H. // J. Org. Chem. 2009. V. 74. № 18. P. 7157–7164. https://doi.org/10.1021/jo901670w
  65. McNeice P., Vallana F.M.F., Coles S.J., Horton P.N., Marr P.C., Seddon K.R., Marr A.C. // J. Mol. Liq. 2020. V. 297. Art. № 111773. https://doi.org/10.1016/j.molliq.2019.111773
  66. Pernak J., Rzemieniecki T., Klejdysz T., Qu F., Ro-gers R.D. // ACS Sustain. Chem. Eng. 2020. V. 8. № 25. P. 9263–9267. https://doi.org/10.1021/acssuschemeng.0c03501
  67. Rzemieniecki T., Kleiber T., Pernak J. // RSC Adv. 2021. V. 11. № 44. P. 27530–27540. https://doi.org/10.1039/D1RA04805H
  68. Verma A., Kumar Waiker D., Bhardwaj B., Saraf P., Shrivastava S.K. // Bioorg. Chem. 2022. V. 119. Art. № 105562. https://doi.org/10.1016/j.bioorg.2021.105562
  69. Tsitsipa E., Rogers J., Casalotti S., Belessiotis-Richards C., Zubko O., Weil R.S., Howard R., Bisby J.A., Reeves S. // Neuropsychopharmacology. 2022. V. 47. № 4. P. 880–890. https://doi.org/10.1038/s41386-021-01255-4
  70. Giacobini E., Cuello A.C., Fisher A. // Brain. 2022. V. 145. № 7. P. 2250–2275. https://doi.org/10.1093/brain/awac096
  71. Venkateswaran A., Reddy Y.T., Sonar V.N., Muthusamy V., Crooks P.A., Freeman M.L., Sekhar K.R. // Bioorg. Med. Chem. Lett. 2010. V. 20. № 24. P. 7323–7326. https://doi.org/10.1016/j.bmcl.2010.10.060
  72. Odzak R. // Period. Biol. 2020. V. 121–122. № 1–2. P. 15–21. https://hrcak.srce.hr/file/370031
  73. Bhadani A., Endo T., Koura S., Sakai K., Abe M., Sakai H. // Langmuir. 2014. V. 30. № 30. P. 9036–9044. https://doi.org/10.1021/la502098h
  74. Skocibusic M., Odzak R., Stefanic Z., Krizic I., Kristo L., Jovic O., Hrenar T., Primozic I., Jurasin D. // Colloids Surf. B Biointerfaces. 2016. V. 140. P. 548–559. https://doi.org/10.1016/j.colsurfb.2015.11.023
  75. Odzak R., Sprung M., Soldo B., Skocibusic M., Gudelj M., Muic A., Primozic I. // Open Chem. 2017. V. 15. № 1. P. 320–331. https://doi.org/10.1515/chem-2017-0031
  76. Burilova E.A., Pashirova T.N., Lukashenko S.S., Sapu-nova A.S., Voloshina A.D., Zhiltsova E.P., Campos J.R., Souto E.B., Zakharova L.Y. // J. Mol. Liq. 2018. V. 272. P. 722–730. https://doi.org/10.1016/j.molliq.2018.10.008
  77. Bazina L., Maravic A., Krce L., Soldo B., Odzak R., Popovic V.B., Aviani I., Primozic I., Sprung M. // Eur. J. Med. Chem. 2019. V. 163. P. 626–635. https://doi.org/10.1016/j.ejmech.2018.12.023
  78. Li R., Wang Z., Xu Q., Yao S., Li Z., Song H. // J. Mol. Struct. 2020. V. 1209. Art. № 127918. https://doi.org/10.1016/j.molstruc.2020.127918
  79. Skrzypczak N., Pyta K., Ruszkowski P., Mikolajczak P., Kucinska M., Murias M., Gdaniec M., Bartl F., Przybylski P. // J. Enzyme Inhib. Med. Chem. 2021. V. 36. № 1. P. 1898–1904. https://doi.org/10.1080/14756366.2021.1960829
  80. Kar S., Sanderson H., Roy K., Benfenati E., Leszczyn-ski J. // Chem. Rev. 2022. V. 122. № 3. P. 3637–3710. https://doi.org/10.1021/acs.chemrev.1c00631
  81. Viji M., Lanka S., Sim J., Jung C., Lee H., Vishwanath M., Jung J.-K. // Catalysts. 2021. V. 11. № 8. Art. № 1013. https://doi.org/10.3390/catal11081013
  82. Burakova E.A., Saranina I.V., Tikunova N.V., Nazarki-na Z.K., Laktionov P.P., Karpinskaya L.A., Anikin V.B., Zarubaev V.V., Silnikov V.N. // Bioorg. Med. Chem. 2016. V. 24. № 22. P. 6012–6020. https://doi.org/10.1016/j.bmc.2016.09.064
  83. Pashirova T.N., Ziganshina A.Y., Sultanova E.D., Lukashenko S.S., Kudryashova Y.R., Zhiltsova E.P., Zakharova L.Y., Konovalov A.I. // Colloids Surf., A. 2014. V. 448. P. 67–72. https://doi.org/10.1016/j.colsurfa.2014.02.012
  84. Pashirova T.N., Sapunova A.S., Lukashenko S.S., Burilova E.A., Lubina A.P., Shaihutdinova Z.M., Gerasimo-va T.P., Kovalenko V.I., Voloshina A.D., Souto E.B., Zakharova L.Y. // Int. J. Pharm. 2020. V. 575. Art. № 18953. https://doi.org/10.1016/j.ijpharm.2019.118953
  85. Engel R., Ghani I., Montenegro D., Thomas M., Kla-ritch-Vrana B., Castano A., Friedman L., Leb J., Rothman L., Lee H., Capodiferro C., Ambinder D., Cere E., Awad Ch., Sheikh F., Rizzo J., Nisbett L.-M., Testani E., Melkonian K. // Molecules. 2011. V. 16. № 2. P. 1508–1518. https://doi.org/10.3390/molecules16021508
  86. VanKoten H.W., Dlakic W.M., Engel R., Cloninger M.J. // Mol. Pharm. 2016. V. 13. № 11. P. 3827–3834. https://doi.org/10.1021/acs.molpharmaceut.6b00628
  87. Sreeperumbuduru R.S., Abid Z.M., Claunch K.M., Chen H.-H., McGillivray S.M., Simanek E.E. // RSC Adv. 2016. V. 6. № 11. P. 8806–8810. https://doi.org/10.1039/C5RA10388F
  88. Aries M.L., Cloninger M.J. // Int. J. Mol. Sci. 2021. V. 22. № 24. Art. № 13606. https://doi.org/10.3390/ijms222413606
  89. Pashirova T.N., Zhil’tsova E.P., Kashapov R.R., Lukashenko S.S., Litvinov A.I., Kadirov M.K., Zakharo-va L.Y., Konovalov A.I. // Russ. Chem. Bull. 2010. V. 59. № 9. P. 1745–1752. https://doi.org/10.1007/s11172-010-0307-9
  90. Zhiltsova E.P., Pashirova T.N., Kashapov R.R., Gaisin N.K., Gnezdilov O.I., Lukashenko S.S., Voloshina A.D., Kulik N.V., Zobov V.V., Zakharova L.Y., Konovalov A.I. // Russ. Chem. Bull. 2012. V. 61. № 1. P. 113–120. https://doi.org/10.1007/s11172-012-0016-7
  91. Pashirova T.N., Lukashenko S.S., Zakharov S.V., Volo-shina A.D., Zhiltsova E.P., Zobov V.V., Souto E.B., Zakharova L.Y. // Colloids Surf., B. 2015. V. 127. P. 266–273. https://doi.org/10.1016/j.colsurfb.2015.01.044
  92. Pashirova T.N., Burilova E.A., Lukashenko S.S., Gaysin N.K., Gnezdilov O.I., Sapunova A.S., Fernan-des A.R., Voloshina A.D., Souto E.B., Zhiltsova E.P., Zakharova L.Y. // J. Mol. Liq. 2019. V. 296. Art. № 12062. https://doi.org/10.1016/j.molliq.2019.112062
  93. Zhiltsova E.P., Lukashenko S.S., Pashirova T.N., Vale-eva F.G., Zakharova L.Y. // J. Mol. Liq. 2014. V. 210. Part A. P. 136–142. https://doi.org/10.1016/j.molliq.2015.01.018
  94. Kontos R.C., Schallenhammer S.A., Bentley B.S., Morrison K.R., Feliciano J.A., Tasca J.A., Kaplan A.R., Bezpalko M.W., Kassel W.S., Wuest W.M., Minbiole K.P.C. // ChemMedChem. 2019. V. 14. № 1. P. 83–87. https://doi.org/10.1002/cmdc.201800622
  95. Leitgeb A.J., Feliciano J.A., Sanchez H.A., Allen R.A., Morrison K.R., Sommers K.J., Carden R.G., Wuest W.M., Minbiole K.P.C. // ChemMedChem. 2020. V. 15. № 8. P. 667–670. https://doi.org/10.1002/cmdc.201900662
  96. Yarinich L.A., Burakova E.A., Zakharov B.A., Boldyre-va E.V., Babkina I.N., Tikunova N.V., Silnikov V.N. // Eur. J. Med. Chem. 2015. V. 95. P. 563–573. https://doi.org/10.1016/j.ejmech.2015.03.033
  97. Guo J., Qin J., Ren Y., Wang B., Cui H., Ding Y., Mao H., Yan F. // Polym. Chem. 2018. V. 9. № 37. P. 4611–4616. https://doi.org/10.1039/C8PY00665B
  98. Yuan Y., Liang S., Li J., Zhang S., Zhang Y. // J. Mater. Chem. B. 2019. V. 7. № 37. P. 5620–5625. https://doi.org/10.1039/C9TB01264H
  99. Herman J.L., Wang Y., Lilly E.A., Lallier T.E., Peters B.M., Hamdan S., Xu X., Fidel P.L., Noverr M.C. // Antimicrob. Agents Chemother. 2017. V. 61. № 4. e02575-16. https://doi.org/10.1128/AAC.02575-16
  100. Fernandes A.R., dos Santos T., Granja P.L., Sanchez-Lopez E., Garcia M.L., Silva A.M., Souto E.B. // Int. J. Pharm. 2022. V. 617. Art. № 121615. https://doi.org/10.1016/j.ijpharm.2022.121615
  101. Herrera K.M.S., da Silva F.K., de Lima W.G., Barbo-sa C. de S., Goncalves A.M.M.N., Viana G.H.R., Soa-res A.C., Ferreira J.M.S. // Med. Chem. Res. 2020. V. 29. № 6. P. 1084–1089. https://doi.org/10.1007/s00044-020-02549-w
  102. Herrera K.M.S., Lopes G.F.M., Oliveira M.E., Sousa J.F., Lima W.G., Silva F.K., Brito J.C.M., Gomes A.J.P.S., Viana G.H.R., Soares A.C., Ferreira J.M.S. // Micro-biol. Res. 2022. V. 261. Art. № 127073. https://doi.org/10.1016/j.micres.2022.127073
  103. Araya-Cloutier C., Vincken J.-P., van Ederen R., den Besten H.M.W., Gruppen H. // Food Chem. 2018. V. 240. P. 147–155. https://doi.org/10.1016/j.foodchem.2017.07.074
  104. Miklasinska-Majdanik M., Kepa M., Wojtyczka R., Idzik D., Wasik T. // Int. J. Environ. Res. Public Health. 2018. V. 15. № 10. Art. № 2321. https://doi.org/10.3390/ijerph15102321
  105. Roy A., Fajardie P., Lepoittevin B., Baudoux J., Lapinte V., Caillol S., Briou B. // Molecules. 2022. V. 27. № 4. Art. № 1443. https://doi.org/10.3390/molecules27041443
  106. de Avellar I.G.J., Godoy K., de Magalhaes G.C. // J. Braz. Chem. Soc. 2000. V. 11. № 1. P. 22–26. https://doi.org/10.1590/S0103-50532000000100005
  107. Wang R., Luo Y., Cheng C.-J., Huang Q.-H., Huang H.-S., Qin S.-L., Tu Y.‑M. // Chem. Pap. 2016. V. 70. № 9. P. 1218–1227. https://doi.org/10.1515/chempap-2016-0052
  108. Ma J., Liu N., Huang M., Wang L., Han J., Qian H., Che F. // J. Mol. Liq. 2019. V. 294. Art. № 111669. https://doi.org/10.1016/j.molliq.2019.111669
  109. Zhao X., Lv J., Wang L., Han J. // J. Surfactants Deterg. 2021. V. 24. № 1. P. 15–33. https://doi.org/10.1002/jsde.12449
  110. Luo Y., Liang W., Ma W., Wang P., Zhu T., Xue S., Yuan Z., Gao H., Chen Y., Wang Y. // Nanotechnology. 2020. V. 31. № 26. Art. № 265603. https://iopscience.iop.org/article/10.1088/1361-6528/ab7aa4
  111. Huang M., Ma J., Wu X., Zhao M., Wang L., Che F., Qian H. // J. Surfactants Deterg. 2019. V. 22. № 6. P. 1289–1298. https://doi.org/10.1002/jsde.12324
  112. Kataev V.E., Strobykina I.Y., Zakharova L.Y. // Russ. Chem. Bull. 2014. V. 63. № 9. P. 1884–1900. https://doi.org/10.1007/s11172-014-0680-x
  113. Gabdrakhmanov D.R., Voronin M.A., Zakharova L.Y., Konovalov A.I., Khaybullin R.N., Strobykina I.Y., Kataev V.E., Faizullin D.A., Gogoleva N.E., Konnova T.A., Salnikov V.V., Zuev Yu.F. // Phys. Chem. Chem. Phys. 2013. V. 15. № 39. Art. № 16725. https://doi.org/10.1039/C3CP51511G
  114. Bhadani A., Rane J., Veresmortean C., Banerjee S., John G. // Soft Matter. 2015. V. 11. № 15. P. 3076–3082. https://doi.org/10.1039/C5SM00157A
  115. Feng X., Xiao Z., Yang Y., Chen S., Liao S., Luo H., He L., Wang Z., Fan G. // Nat. Prod. Commun. 2021. V. 16. № 2. P. 1–8. https://doi.org/10.1177/1934578X21992218
  116. Zhang L., Feng X.-Z., Xiao Z.-Q., Fan G.-R., Chen S.-X., Liao S.-L., Luo H., Wang Z.-D. // Int. J. Mol. Sci. 2021. V. 22. № 20. Art. № 11299. https://doi.org/10.3390/ijms222011299
  117. Heise N., Friedrich S., Temml V., Schuster D., Siewert B., Csuk R. // Eur. J. Med. Chem. 2022. V. 227. Art. № 113947. https://doi.org/10.1016/j.ejmech.2021.113947
  118. Peng Y., Chang J., Xiao Z., Huang J., Xu T., Chen S., Fan G., Liao S., Wang Z., Luo H. // Nat. Prod. Commun. 2022. V. 17. № 2. P. 1–10.https://doi.org/10.1177/1934578X221078452
  119. Xia X., Chen Y., Wang L., Yang Z.-G., Ma X.-D., Zhao Z.-G., Yang H.-J. // Steroids. 2021. V. 166. Art. № 108774. https://doi.org/10.1016/j.steroids.2020.108774
  120. Forte B., Malgesini B., Piutti C., Quartieri F., Scolaro A., Papeo G. // Mar. Drugs. 2009. V. 7. P. 705−753. https://doi.org/10.3390/md7040705
  121. Santos A.P., Moreno P.R.H. Alkaloids Derived from Histidine: Imidazole (Pilocarpine, Pilosine). In: Natural Products. Ramawat K., Mérillon J.M. (Eds.). Springer-Verlag, Berlin, Heidelberg, 2013. P. 861−882. https://doi.org/10.1007/978-3-642-22144-6_27
  122. Crncevic D., Krce L., Mastelic L., Maravic A., Soldo B., Aviani I., Primozic I., Odzak R., Sprung M. // Bioorg. Chem. 2021. V. 112. Art. № 104938. https://doi.org/10.1016/j.bioorg.2021.104938

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (149KB)
3.

Download (125KB)
4.

Download (99KB)
5.

Download (169KB)
6.

Download (39KB)
7.

Download (54KB)
8.

Download (210KB)
9.

Download (141KB)
10.

Download (153KB)
11.

Download (36KB)

Copyright (c) 2023 Т.Н. Паширова, З.М. Шайхутдинова, В.Ф. Миронов, А.В. Богданов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».