STRUCTURE AND PROPERTIES OF A HIGH-ENTROPY AlCrFeCoNi ALLOY AFTER ELECTRON-ION-PLASMA TREATMENT

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

With the help of wire arc additive manufacturing, a HEA of AlCrFeCoNi was prepared: of a non-equiatomic composition, on which a B + Cr film with a thickness of ~1 μm was deposited by plasma-assisted RF sputtering. Subsequent processing consisted in electron-beam irradiation of the surface with the following parameters: energy density 20–40 J/cm2, pulse duration 200 μs, frequency 0.3 s–1, number of pulses 3. A quasi-periodic distribution of chemical elements (at. %) 33.4Al; 8.3Cr; 17.1 Fe; 5.4Co; 35.7 Ni is established. It is shown that at the energy density of the electron beam Es = 20 J/cm2, the microhardness increases by a factor of 2, wear resistance by a factor of 5, and the friction coefficient decreases by a factor of 1.3. High-speed crystallization of the surface layer leads to the formation of a subgrain structure with subgrain sizes (150–200 nm). The increase in strength and tribological properties during electron-beam processing is interpreted taking into account the reduction in grain size, the formation of chromium and aluminum oxyborides, and the formation of a solid solution of boron incorporation into the HEA crystal lattice.

作者简介

V. Gromov

Siberian State Industrial University

编辑信件的主要联系方式.
Email: gromov@physics.sibsiu.ru
Russia, Novokuznetsk

Yu. Ivanov

Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences

Email: gromov@physics.sibsiu.ru
Russia, Tomsk

M. Efimov

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
Russia, Novokuznetsk

Yu. Shliarova

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
Russia, Novokuznetsk

参考

  1. Wang Z., Huang Y., Yang Y., et al. Atomic- size effect and solid solubility of multicomponent alloys // Scripta Mater. 2015. V. 94. P. 28–31.
  2. Li D.Y., Zhang Y. The ultrahigh charpy impact toughness of forged AlCoCrFeNi high entropy alloys at room and cryogenic temperatures // Intermetallics. 2016. V. 70. P. 24–28.
  3. Yeh J.-W., Chen S.-K., Lin S.J., et al. Nanostructured high-entropy alloys with multiple principal elements: Novel design concepts and outcomes // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299–303.
  4. Cantor B., Chang I.T.H., Knight P., et al. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A 2004. V. 375–377. P. 213–218.
  5. Yeh J.-W., Chen S.-K., Gan J.-Y., et al. Formation of simple crystal structures in Cu-Co-Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements // Metal. Mater. Trans. A. 2004. V. 35A. P. 2533–2536.
  6. Yeh J.-W., Chen Y.-L., Lin S.-J., et al. High-entropy alloys – a new era of exploration // Mater. Sci. Forum. 2007. V. 560. P. 1–9.
  7. Chang S.Y., Lin S.Y., Huang Y.C., et al. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings // Surf. Coat. Technol. 2010. V. 204. P. 3307–3314.
  8. Shen W.-J., Tsai M.-H., Chang Y.-S., et al. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings // Thin Solid Films. 2012. V. 520. P. 6183–6188.
  9. Braic V., Vladescu A., Balaceanu M., et al. Nanostructured multielement (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings // Surf. Coat. Technol. 2012. V. 211. P. 117–121.
  10. Lin M.I., Tsai M.H., Shen WJ., et al. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films // Thin Solid Films. 2010. V. 518. P. 2732–2737.
  11. Zhao Y., Zhang J., Wang Y., et al. Size- dependent mechanical properties and deformation mechanisms in Cu/NbMoTaW nanolaminates // Sci. China Mater. 2020. V. 63. P. 444–452.
  12. Cao Z.H., Ma Y.J., Cai Y.P., et al. High strength dual-phase high entropy alloys with a tunable nanolayer thickness // Scripta Mater. 2019. V. 173. P. 149–153.
  13. Rong Z., Wang C., Wang Y., et al. Microstructure and properties of FeCoNiCrX (X=Mn,Al) high entropy alloy coatings // Journal of Alloys and Compounds. 2022. V. 921. P. 166061.
  14. Guo J., Goh M., Zhu Z., et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy // Materials and Design. 2018. V. 153. P. 211–220.
  15. Lindner T., Löbel M., Sattler B., et al. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding // Surface and Coatings Technology. 2019. V. 371. P. 389–394.
  16. Ivanov Yu.F., Gromov V.E., Zagulyaev D.V., et al. Prospects for the application of surface treatment of alloys by electron beams in state of the art technologies // Progress in Physics of metals. 2020. V. 21. № 3. P. 345–362.
  17. Ivanov Yu.F., Gromov V.E., Zagulyaev D.V., et al. Improvement of functional properties of alloys by electron beam treatment // Steel in Translation. 2022. V. 52. № 1. P. 71–75.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (106KB)
3.

下载 (2MB)

版权所有 © В.Е. Громов, Ю.Ф. Иванов, М.О. Ефимов, Ю.А. Шлярова, 2023

##common.cookie##