SIMULATION THE VIBRATIONS OF RAILWAY STRUCTURES BY THE GRID-CHARACTERISTIC METHOD

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The aim of the study is to apply the grid-characteristic method on structured grids in various problems related to railway traffic safety; obtaining the results of full wave modeling using this method and analyzing them for a better understanding of the physical processes occurring in conditions of heavy and high-speed traffic on various sections of the track. The problem is to consider the traffic on a ballast and non-ballast bridge desk. In the course of computer simulation, various wave fields and dynamic distributions of the pressure and components of the Cauchy stress tensor were obtained during the traffic. An estimate of the calculation time during which the propagation of wave processes occurs in various bridge structures was made. The results obtained give an idea of wave phenomena during the traffic in the area of bridges and along the railway track as a whole.

作者简介

I. Petrov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: petrov@mipt.ru
Russia, Moscow

A. Kozhemyachenko

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kozhemyachenko@phystech.edu
Russia, Moscow

A. Favorskaya

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: favorskaya@phystech.edu
Russia, Moscow

参考

  1. Поляков В.Ю., Данг Н.Т. Безопасность движения и динамические свойства мостового полотна на ВСМ // Вестник научно-исследовательского института железнодорожного транспорта. 2018. Т. 77. № 6. С. 357–363. https://doi.org/10.21780/2223-9731-2018-77-6-357-363
  2. Поляков В.Ю., Данг Н.Т. Ударное взаимодействие колеса и рельса на мостах высокоскоростных магистралей // Интернет-журнал “Транспортные сооружения”. 2019. № 1. https://doi.org/10.15862/15SATS119
  3. Поляков В.Ю., Данг Н.Т. Безбалластное мостовое полотно на ВСМ // Мир транспорта. 2018. Т. 16. № 2. С. 36–55.
  4. Бельков В.М. Моделирование вибродемпфирующих свойств упруговязкопластических слоев земляного полотна. Постановка задачи 1 // Вестник научно-исследовательского института железнодорожного транспорта. 2017. Т. 76. № 3. С. 187–192. https://doi.org/10.21780/2223-9731-2017-76-3-187-192
  5. Бельков В.М. Моделирование вибродемпфирующих свойств упруговязкопластических слоев земляного полотна. Постановка задачи 2 // Вестник научно-исследовательского института железнодорожного транспорта. 2017. Т. 76. № 5. С. 312–320. https://doi.org/10.21780/2223-9731-2017-76-5-312-320
  6. Воробьев А.А. Контактное взаимодействие колеса и рельса // Вестник Иркутского государственного технического университета. 2009. № 3 (39). С. 42–47.
  7. Bogdevicius M., Zygiene R., Bureika G., Dailydka S. An analytical mathematical method for calculation of the dynamic wheel–rail impact force caused by wheel flat // Vehicle system dynamics. 2016. V. 54. № 5. P. 689–705. https://doi.org/10.1080/00423114.2016.1153114
  8. Loktev A.A., Sychev V.P., Buchkin V.A., Bykov Y.A., Andreichicov A.V., Stepanov R.N. Determination of the pressure between the wheel of the moving railcar and rails subject to the defects // Proc. 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS. 2017. P. 748–751. https://doi.org/10.1109/ITMQIS.2017.8085934
  9. Nikitin I.S., Golubev V.I. Higher order schemes for problems of dynamics of layered media with nonlinear contact conditions // Smart Innovation, Systems and Technologies. 2022. V. 274. P. 273–287. https://doi.org/10.1007/978-981-16-8926-0_19
  10. Khokhlov N., Favorskaya A., Stetsyuk V., Mitskovets I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // Journal of Computational Physics. 2021. V. 446. Art. № 110637. https://doi.org/10.1016/j.jcp.2021.110637
  11. Favorskaya A.V., Muratov M.V. Ultrasonic study of sea ice ridges // Smart Innovation, Systems and Technologies. 2022. V. 309. P. 259–268. https://doi.org/10.1007/978-981-19-3444-5_23
  12. Петров И.Б., Кабисов С.В., Фаворская А.В. Моделирование ультразвуковых волн в железнодорожных рельсах с явным выделение дефектов // ДАН. 2018. Т. 481. № 1. С. 20–23.
  13. Favorskaya A.V., Khokhlov N.I. Using Chimera grids to describe boundaries of complex shape // Smart Innovation, Systems and Technologies. 2022. V. 309. P. 249–258. https://doi.org/10.1007/978-981-19-3444-5_22
  14. Nejad R.M. Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels // Engineering Failure Analysis. 2014. V. 45. P. 449–455. https://doi.org/10.1016/j.engfailanal.2014.07.018
  15. Бархатов В.А. Моделирование ультразвуковых волн методом конечных разностей во временной области. Двумерная задача. Оптимальные алгоритмы. Анализ погрешностей. Поглощающие области вблизи границ сетки // Дефектоскопия. 2009. № 6. С. 58–75.
  16. Bartoli I., Marzani A., di Scalea F.L., Viola E. Modeling wave propagation in damped waveguides of arbitrary cross-section // Journal of Sound and Vibration. 2006. V. 295. № 3–5. P. 685–707. https://doi.org/10.1016/j.jsv.2006.01.021
  17. Zumpano G., Meo M. A new damage detection technique based on wave propagation for rails // International Journal of Solids and Structures. 2006. V. 43. № 5. P. 1023–1046. https://doi.org/10.1117/12.541536
  18. Кожемяченко А.А., Петров И.Б., Фаворская А.В., Хохлов Н.И. Граничные условия для моделирования воздействия колес на железнодорожный путь // ЖВМиМФ. 2020. Т. 60. № 9. С. 1587–1603. https://doi.org/10.31857/S0044466920090112

补充文件

附件文件
动作
1. JATS XML
2.

下载 (41KB)
3.

下载 (19KB)
4.

下载 (368KB)
5.

下载 (267KB)

版权所有 © И.Б. Петров, А.А. Кожемяченко, А.В. Фаворская, 2023

##common.cookie##