МОДЕЛИРОВАНИЕ ВИБРАЦИЙ ЖЕЛЕЗНОДОРОЖНЫХ КОНСТРУКЦИЙ СЕТОЧНО-ХАРАКТЕРИСТИЧЕСКИМ МЕТОДОМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Целью исследования является применение сеточно-характеристического метода на структурированных сетках в различных задачах, связанных с железнодорожной безопасностью транспорта; получение результатов полного волнового моделирования с использованием данного численного метода и их анализ для лучшего понимания физических процессов, происходящих в условиях тяжеловесного и высокоскоростного движения на различных участках пути. К задаче исследования относится рассмотрение движения поезда по балластному и безбалластному мостовому полотну. В ходе компьютерного моделирования были получены и проанализированы различные волновые поля и динамические распределения давления и компонент тензора напряжений Коши при движении состава по железнодорожному пути. Произведена оценка времени, за которое происходит распространение волновых процессов в различных конструкциях моста. Полученные результаты дают представление о волновых явлениях при движении подвижного состава в зоне мостов и по железнодорожному пути в целом.

Об авторах

И. Б. Петров

Научно-исследовательский институт
системных исследований Российской академии наук

Автор, ответственный за переписку.
Email: petrov@mipt.ru
Россия, Москва

А. А. Кожемяченко

Научно-исследовательский институт
системных исследований Российской академии наук

Автор, ответственный за переписку.
Email: kozhemyachenko@phystech.edu
Россия, Москва

А. В. Фаворская

Научно-исследовательский институт
системных исследований Российской академии наук

Автор, ответственный за переписку.
Email: favorskaya@phystech.edu
Россия, Москва

Список литературы

  1. Поляков В.Ю., Данг Н.Т. Безопасность движения и динамические свойства мостового полотна на ВСМ // Вестник научно-исследовательского института железнодорожного транспорта. 2018. Т. 77. № 6. С. 357–363. https://doi.org/10.21780/2223-9731-2018-77-6-357-363
  2. Поляков В.Ю., Данг Н.Т. Ударное взаимодействие колеса и рельса на мостах высокоскоростных магистралей // Интернет-журнал “Транспортные сооружения”. 2019. № 1. https://doi.org/10.15862/15SATS119
  3. Поляков В.Ю., Данг Н.Т. Безбалластное мостовое полотно на ВСМ // Мир транспорта. 2018. Т. 16. № 2. С. 36–55.
  4. Бельков В.М. Моделирование вибродемпфирующих свойств упруговязкопластических слоев земляного полотна. Постановка задачи 1 // Вестник научно-исследовательского института железнодорожного транспорта. 2017. Т. 76. № 3. С. 187–192. https://doi.org/10.21780/2223-9731-2017-76-3-187-192
  5. Бельков В.М. Моделирование вибродемпфирующих свойств упруговязкопластических слоев земляного полотна. Постановка задачи 2 // Вестник научно-исследовательского института железнодорожного транспорта. 2017. Т. 76. № 5. С. 312–320. https://doi.org/10.21780/2223-9731-2017-76-5-312-320
  6. Воробьев А.А. Контактное взаимодействие колеса и рельса // Вестник Иркутского государственного технического университета. 2009. № 3 (39). С. 42–47.
  7. Bogdevicius M., Zygiene R., Bureika G., Dailydka S. An analytical mathematical method for calculation of the dynamic wheel–rail impact force caused by wheel flat // Vehicle system dynamics. 2016. V. 54. № 5. P. 689–705. https://doi.org/10.1080/00423114.2016.1153114
  8. Loktev A.A., Sychev V.P., Buchkin V.A., Bykov Y.A., Andreichicov A.V., Stepanov R.N. Determination of the pressure between the wheel of the moving railcar and rails subject to the defects // Proc. 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS. 2017. P. 748–751. https://doi.org/10.1109/ITMQIS.2017.8085934
  9. Nikitin I.S., Golubev V.I. Higher order schemes for problems of dynamics of layered media with nonlinear contact conditions // Smart Innovation, Systems and Technologies. 2022. V. 274. P. 273–287. https://doi.org/10.1007/978-981-16-8926-0_19
  10. Khokhlov N., Favorskaya A., Stetsyuk V., Mitskovets I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // Journal of Computational Physics. 2021. V. 446. Art. № 110637. https://doi.org/10.1016/j.jcp.2021.110637
  11. Favorskaya A.V., Muratov M.V. Ultrasonic study of sea ice ridges // Smart Innovation, Systems and Technologies. 2022. V. 309. P. 259–268. https://doi.org/10.1007/978-981-19-3444-5_23
  12. Петров И.Б., Кабисов С.В., Фаворская А.В. Моделирование ультразвуковых волн в железнодорожных рельсах с явным выделение дефектов // ДАН. 2018. Т. 481. № 1. С. 20–23.
  13. Favorskaya A.V., Khokhlov N.I. Using Chimera grids to describe boundaries of complex shape // Smart Innovation, Systems and Technologies. 2022. V. 309. P. 249–258. https://doi.org/10.1007/978-981-19-3444-5_22
  14. Nejad R.M. Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels // Engineering Failure Analysis. 2014. V. 45. P. 449–455. https://doi.org/10.1016/j.engfailanal.2014.07.018
  15. Бархатов В.А. Моделирование ультразвуковых волн методом конечных разностей во временной области. Двумерная задача. Оптимальные алгоритмы. Анализ погрешностей. Поглощающие области вблизи границ сетки // Дефектоскопия. 2009. № 6. С. 58–75.
  16. Bartoli I., Marzani A., di Scalea F.L., Viola E. Modeling wave propagation in damped waveguides of arbitrary cross-section // Journal of Sound and Vibration. 2006. V. 295. № 3–5. P. 685–707. https://doi.org/10.1016/j.jsv.2006.01.021
  17. Zumpano G., Meo M. A new damage detection technique based on wave propagation for rails // International Journal of Solids and Structures. 2006. V. 43. № 5. P. 1023–1046. https://doi.org/10.1117/12.541536
  18. Кожемяченко А.А., Петров И.Б., Фаворская А.В., Хохлов Н.И. Граничные условия для моделирования воздействия колес на железнодорожный путь // ЖВМиМФ. 2020. Т. 60. № 9. С. 1587–1603. https://doi.org/10.31857/S0044466920090112

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (41KB)
3.

Скачать (19KB)
4.

Скачать (368KB)
5.

Скачать (267KB)

© И.Б. Петров, А.А. Кожемяченко, А.В. Фаворская, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».