Study of laser cavitation process using numerical simulation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work presents a numerical simulation of the process of growth and collapse of a vapor bubble that occurs at the tip of an optical fiber (laser heating element) immersed in water. The constructed numerical solutions allow us to find the temperature field distribution in a superheated liquid when a bubble appears, and to obtain the values of the velocity and temperature of the cavitation jet that occurs when the bubble collapses.

Sobre autores

E. Dats

Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences; Vladivostok State University

Email: datsep@gmail.com
Vladivostok, Russian Federation; Vladivostok, Russian Federation

M. Guzev

Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Email: datsep@gmail.com

Academician of the RAS

Vladivostok, Russian Federation

V. Chudnovskii

Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: datsep@gmail.com
Vladivostok, Russian Federation

Bibliografia

  1. Felix M., Ellis A. Laser-induced liquid breakdown – A step-by-step account // Appl. Phys. Lett. 1971. V. 19. P. 484–486.
  2. Lauterborn W., Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary // J. Fluid Mech. 1975. V. 72. P. 391–399.
  3. Fursenko R.V., Chudnovskii V.M., Minaev S.S., Okajima J. Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid // Intern. J. Heat and Mass Transfer. 2020. V. 163. 120420.
  4. Kulik A.V., Mokrin S.N., Kraevskii A.M., Minaev S.S., Guzev M.A., Chudnovskii V.M. Features of dynamics of a jet flow generated on a laser heater by surface boiling of liquid // Technical Physics Letters. 2022. V. 48. No. 1. P. 60–63. doi: 10.21883/TPL.2022.01.52472.18949
  5. Koch M. Rosselló J.M., Lechner C., Lauterborn W., Mettin R. Dynamics of a Laser-Induced Bubble above the Flat Top of a Solid Cylinder – Mushroom-Shaped Bubbles and the Fast Jet // Fluids. 2022. No. 7. 2.
  6. Kadivar E., Phan T.-H., Park W.-G. et al. Dynamics of a single cavitation bubble near a cylindrical rod // Phys. Fluids. 2021. V. 33. 113315. https://doi.org/10.1063/5.0070847
  7. Reuter F., Ohl C.-D. Supersonic needle-jet generation with single cavitation bubbles // Appl. Phys. Lett. 2021. V. 118. 134103. doi: 10.1063/5.0045705
  8. Gonzalez-Avila S., Denner F., Ohl C.-D. The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall // Phys. Fluids. 2021. V. 33. 032118. https://doi.org/10.1063/5.0043822
  9. Kosyakov V.A., Fursenko R.V., Chudnovskii V.M., Minaev S.S. Physical mechanisms controlling a vapor bubble collapse and formation of a liquid jet during a laser-induced subcooled boiling near the end face of a thin waveguide // International Communications in Heat and Mass Transfer. 2023. V. 148. 107053. https://doi.org/10.1016/j.icheatmasstransfer.2023.107053
  10. Padilla-Martinez J.P., Berrospe-Rodriguez C., Aguilar G., Ramirez-San-Juan J.C., Ramos-Garcia R. Optic cavitation with CW lasers: A review // Physics of Fluids. 2014. V. 26. 12. https://doi.org/10.1063/1.4904718
  11. Zhukov S.A., Afanas’ev S.Yu., Echmaev S.B. Concerning the magnitude of maximum heat flux and the mechanisms of superintensive bubble boiling // Intern. J. Heat Mass Transfer. 2003. № 46. Р. 3411–3427.
  12. Скрипов В.П. Метастабильная жидкость / В. П. Скрипов. М.: Наука, 1972. 342 с.
  13. Skripov, V.P. Metastable Liquid. Moscow: Nauka, 1972, 342 p.
  14. Yusupov V.I. Formation of Supercritical Water under Laser Radiation. Russ. // J. Phys. Chem. B. 2019. V. 13. P. 1245–1253. https://doi.org/10.1134/S1990793119070297
  15. Lee W.H. “Pressure iteration scheme for two-phase flow modeling” in Multiphase Transport Fundamentals, Reactor Safety, Applications / Ed. T. Veziroglu. Washington (DC): Hemisphere Publishing, 1980. P. 407–432.
  16. Mayerhöfer T.G., Pahlow S., Popp J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure // Chemphyschem. 2020. V. 21 (18). P. 2029–2046. doi: 10.1002/cphc.202000464
  17. Deng R., He Y., Qin Y., Chen Q., Chen L. Measuring pure water absorption coefficient in the near-infrared spectrum (900–2500 nm) // Yaogan Xuebao – J. Remote Sensing. 2012. V. 16. No. 1. H. 192–206.
  18. Engineering ToolBox. 2001. [online] Available at: ttps://www.engineeringtoolbox.com [Accessed 01.12.2024].
  19. Patankar S.V. Numerical Heat Transfer and Fluid Flow. Washington (DC): Hemisphere, 1980.
  20. Brackbill J.U., Kothe D.B., Zemach C. A continuum Method for Modeling Surface Tension // J. Comput. Phys. 1992. V. 100. P. 335–354.
  21. Zhang Yu., Li G., Zhang G., Ding S. Development and modified implementation of Lee model for condensation simulation // Appl. Thermal Engineering. 2023.
  22. Чернов А.А., Гузев М.А., Пильник А.А., Адамова Т.П., Левин А.А., Чудновский В.М. Влияние вторичного вскипания на динамику струи, формирующейся при коллапсе парового пузырька, индуцированного лазерным нагревом жидкости // Доклады РАН. Физика, технические науки. 2021. Т. 501. С. 54–58. doi: 10.31857/S2686740021060067
  23. Chernov, A.A., Guzev, M.A., Pilnik, A.A., Adamova, T.P., Levin, A.A., and Chudnovskii, V.M. Influence of Secondary Boiling on the Jet Dynamics Formed during the Collapse of a Vapor Bubble Induced by Laser Heating of a Liquid. Doklady RAN. Physics, Technical Sciences, 2021, Vol. 501, p. 54–58. doi: 10.31857/S2686740021060067

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).