Study of laser cavitation process using numerical simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work presents a numerical simulation of the process of growth and collapse of a vapor bubble that occurs at the tip of an optical fiber (laser heating element) immersed in water. The constructed numerical solutions allow us to find the temperature field distribution in a superheated liquid when a bubble appears, and to obtain the values of the velocity and temperature of the cavitation jet that occurs when the bubble collapses.

About the authors

E. P Dats

Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences; Vladivostok State University

Email: datsep@gmail.com
Vladivostok, Russian Federation; Vladivostok, Russian Federation

M. A Guzev

Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Email: datsep@gmail.com

Academician of the RAS

Vladivostok, Russian Federation

V. M Chudnovskii

Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: datsep@gmail.com
Vladivostok, Russian Federation

References

  1. Felix M., Ellis A. Laser-induced liquid breakdown – A step-by-step account // Appl. Phys. Lett. 1971. V. 19. P. 484–486.
  2. Lauterborn W., Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary // J. Fluid Mech. 1975. V. 72. P. 391–399.
  3. Fursenko R.V., Chudnovskii V.M., Minaev S.S., Okajima J. Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid // Intern. J. Heat and Mass Transfer. 2020. V. 163. 120420.
  4. Kulik A.V., Mokrin S.N., Kraevskii A.M., Minaev S.S., Guzev M.A., Chudnovskii V.M. Features of dynamics of a jet flow generated on a laser heater by surface boiling of liquid // Technical Physics Letters. 2022. V. 48. No. 1. P. 60–63. doi: 10.21883/TPL.2022.01.52472.18949
  5. Koch M. Rosselló J.M., Lechner C., Lauterborn W., Mettin R. Dynamics of a Laser-Induced Bubble above the Flat Top of a Solid Cylinder – Mushroom-Shaped Bubbles and the Fast Jet // Fluids. 2022. No. 7. 2.
  6. Kadivar E., Phan T.-H., Park W.-G. et al. Dynamics of a single cavitation bubble near a cylindrical rod // Phys. Fluids. 2021. V. 33. 113315. https://doi.org/10.1063/5.0070847
  7. Reuter F., Ohl C.-D. Supersonic needle-jet generation with single cavitation bubbles // Appl. Phys. Lett. 2021. V. 118. 134103. doi: 10.1063/5.0045705
  8. Gonzalez-Avila S., Denner F., Ohl C.-D. The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall // Phys. Fluids. 2021. V. 33. 032118. https://doi.org/10.1063/5.0043822
  9. Kosyakov V.A., Fursenko R.V., Chudnovskii V.M., Minaev S.S. Physical mechanisms controlling a vapor bubble collapse and formation of a liquid jet during a laser-induced subcooled boiling near the end face of a thin waveguide // International Communications in Heat and Mass Transfer. 2023. V. 148. 107053. https://doi.org/10.1016/j.icheatmasstransfer.2023.107053
  10. Padilla-Martinez J.P., Berrospe-Rodriguez C., Aguilar G., Ramirez-San-Juan J.C., Ramos-Garcia R. Optic cavitation with CW lasers: A review // Physics of Fluids. 2014. V. 26. 12. https://doi.org/10.1063/1.4904718
  11. Zhukov S.A., Afanas’ev S.Yu., Echmaev S.B. Concerning the magnitude of maximum heat flux and the mechanisms of superintensive bubble boiling // Intern. J. Heat Mass Transfer. 2003. № 46. Р. 3411–3427.
  12. Skripov, V.P. Metastable Liquid. Moscow: Nauka, 1972, 342 p.
  13. Yusupov V.I. Formation of Supercritical Water under Laser Radiation. Russ. // J. Phys. Chem. B. 2019. V. 13. P. 1245–1253. https://doi.org/10.1134/S1990793119070297
  14. Lee W.H. “Pressure iteration scheme for two-phase flow modeling” in Multiphase Transport Fundamentals, Reactor Safety, Applications / Ed. T. Veziroglu. Washington (DC): Hemisphere Publishing, 1980. P. 407–432.
  15. Mayerhöfer T.G., Pahlow S., Popp J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure // Chemphyschem. 2020. V. 21 (18). P. 2029–2046. doi: 10.1002/cphc.202000464
  16. Deng R., He Y., Qin Y., Chen Q., Chen L. Measuring pure water absorption coefficient in the near-infrared spectrum (900–2500 nm) // Yaogan Xuebao – J. Remote Sensing. 2012. V. 16. No. 1. H. 192–206.
  17. Engineering ToolBox. 2001. [online] Available at: ttps://www.engineeringtoolbox.com [Accessed 01.12.2024].
  18. Patankar S.V. Numerical Heat Transfer and Fluid Flow. Washington (DC): Hemisphere, 1980.
  19. Brackbill J.U., Kothe D.B., Zemach C. A continuum Method for Modeling Surface Tension // J. Comput. Phys. 1992. V. 100. P. 335–354.
  20. Zhang Yu., Li G., Zhang G., Ding S. Development and modified implementation of Lee model for condensation simulation // Appl. Thermal Engineering. 2023.
  21. Chernov, A.A., Guzev, M.A., Pilnik, A.A., Adamova, T.P., Levin, A.A., and Chudnovskii, V.M. Influence of Secondary Boiling on the Jet Dynamics Formed during the Collapse of a Vapor Bubble Induced by Laser Heating of a Liquid. Doklady RAN. Physics, Technical Sciences, 2021, Vol. 501, p. 54–58. doi: 10.31857/S2686740021060067

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).