Flow pattern evolution of a nanoparticle suspension drop with water merging in the impact flow mode

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The evolution of the substance transfer pattern at the initial stage of merging a drop of nanofluid — a suspension of iron oxide nanoparticles — with tap water was tracked using high-speed video recording for the first time. Experiments were performed in the impact mode, when the kinetic energy of the drop significantly exceeds its potential surface energy (PSE). During merging, the nanofluid drop disintegrates into thin trickles, traces of which form linear and mesh structures on the surface of the crown and cavity. The trickles pierce the walls of the cavity and penetrate into the thickness of the liquid, where they form an intermediate layer. The general geometry of the flow is consistent with the coalescing pattern of a drop of electrolyte — a dilute solution of potassium permanganate. The evolution of the structure over time was traced at the initial stage of drop merging.

Sobre autores

Yu. Chashechkin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: chakin@ipmnet.ru
Moscow, Russian Federation

A. Ilinykh

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: ilynykh@ipmnet.ru
Moscow, Russian Federation

Bibliografia

  1. Worthington A., Cole R. Impact with a liquid surface, studied by the aid of instantaneous photography // Phil. Trans. R. Soc. Lond. A. 1897. V. 189. P. 137–148. https://doi.org/10.1098/rsta.1897.0005
  2. Fernández-Raga M., Cabeza-Ortega M., González-Castro V. et al. The Use of high-speed cameras as a tool for the characterization of raindrops in splash laboratory studies // Water. 2021. V. 13. P. 2851. https://doi.org/10.3390/w13202851
  3. Wang H., Liu S., Bayeul-Lainé A.-C. et al. Analysis of high-speed drop impact onto deep liquid pool // J. of Fluid Mech. 2023. V. 972. A31. doi: 10.1017/jfm.2023.701
  4. Чашечкин Ю.Д. Закономерности распределения вещества свободно падающей окрашенной капли в прозрачной принимающей жидкости (обзор) // Известия РАН. Механика жидкости и газа. 2025. № 1. C. 34–76. doi: 10.1134/S0015462824604315
  5. Chashechkin Yu. The laws of the matter distribution in a colored free-falling drop in a transparent target fluid (Review) // Fluid Dyn. 2024; Vol. 59 (6), р. 1693–1734. doi: 10.1134/S0015462824604315
  6. Das S., Choi S., Yu W. et al. Nanofluids: Science and Technology. Wiley-Interscience, 2008. 416 p.
  7. Awais M., Ullah N., Ahmad J. et al. Heat transfer and pressure drop performance of nanofluid: A state-of-the-art review // Int. J. of Thermofluids. 2021. № 9. P. 100065. https://doi.org/10.1016/j.ijft.2021.100065
  8. Yang L., Tian J., Ding Y. et al. The physics of phase transition phenomena enhanced by nanoparticles // Appl. Phys. Rev. 2025. V. 12. P. 011307. https://doi.org/10.1063/5.0200714
  9. Grishaev V., Iorio C., Dubois F. et al. Impact of particle-laden drops: Particle distribution on the substrate // J. of Colloid and Interface Sci. 2017. V. 490(15). P. 108–118. https://doi.org/10.1016/j.jcis.2016.11.038
  10. Shah P., Driscoll M. Drop impact dynamics of complex fluids: a review // Soft Matter. 2024. V. 20. P. 4839–4858. doi: 10.1039/D4SM00145A
  11. Yan B., Tang X. Impact Dynamics of Droplet Containing Particle Suspensions on Deep Liquid Pool. Cornell University, 2023. https://doi.org/10.48550/arXiv.2306.16543
  12. Zhang Y., Mu Z., Wei Y. et al. Evolution of the heavy impacting droplet: Via a vortex ring to a bifurcation flower // Phys. of Fluids. 2021. V. 33. P. 113603. https://doi.org/10.1063/5.0064072
  13. Peck B., Sigurdson L. The three-dimensional vortex structure of an impacting water drop // Phys. of Fluids. 1994. V. 6(2). P. 564–576. doi: 10.1063/1.868352
  14. Чашечкин Ю.Д., Ильиных А.Ю. Задержка формирования каверны в интрузивном режиме слияния свободно падающей капли с принимающей жидкостью // Доклады РАН. Физика, технические науки. 2021. Т. 496. С. 34–39. doi: 10.31857/S268674002101003X
  15. Chashechkin Yu, Ilinykh A. The delay in cavity formation in the intrusive coalescence of a freely falling drop with a target fluid // Doklady Phys. 2021; Vol. 66 (1), р. 20–25. doi: 10.1134/S102833582101002X
  16. Chashechkin Yu., Ilinykh A. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12(4). P. 374. https://doi.org/10.3390/axioms12040374
  17. Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества капли при формировании первичной каверны // Доклады РАН. Физика, технические науки. 2023. Т. 508. С. 42–52. doi: 10.31857/S2686740022060062
  18. Chashechkin Yu., Ilinykh A. Transfer of drop material during the formation of a primary cavern // Doklady Phys. 2023; Vol. 68 (1), р. 1–10. doi: 10.1134/S1028335822120023
  19. Worthington A. A Study of Splashes. Longmans, Green, and Co.: London, UK, 1908. 96 p. https://www.gutenberg.org/ebooks/39831
  20. Ilinykh A. Spreading of a Multicomponent drop in water: Solutions and suspensions // Fluid Dyn. & Materials Proc. 2020. V. 16(4). P. 723–735. doi: 10.32604/fdmp.2020.08987
  21. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
  22. Landau, L.D. and Lifshitz, E.M. Fluid Mechanics, Pergamon Press: Oxford, 1987. 558 p.
  23. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10(4). P. 286. https://doi.org/10.3390/axioms10040286
  24. УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. http://www.ipmnet.ru/uniqequip/gfk/#equip
  25. GFK IPMech RAS: Hydrophysical Complex for Modeling Hydrodynamic Processes in the Environment and their Impact on Underwater Technical Objects, as well as the Spread of Impurities in the Ocean and Atmosphere. https://ipmnet.ru/uniqequip/gfk/
  26. Чашечкин Ю.Д., Ильиных А.Ю. Множественные выбросы брызг при ударе капли // Доклады РАН. Физика, технические науки. 2020. Т. 494. С. 42–46. doi: 10.31857/S2686740020050181
  27. Chashechkin Yu., Ilinykh A. Multiple emissions of splashes upon drop impact // Doklady Phys. 2020; Vol. 65 (10); р. 384–388. doi: 10.1134/S1028335820100067
  28. Чашечкин Ю.Д. Эволюция тонкоструктурного распределение вещества свободно падающей капли в смешивающихся жидкостях // Изв. РАН. Физ. атм. океана. 2019. Т. 55(3). С. 67–77. doi: 10.1134/S0001433819020026
  29. Chashechkin Yu. Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids // Izvestiya, Atmospheric and Oceanic Phys. 2019; Vol. 55 (3), р. 285–294. doi: 10.1134/S0001433819020026
  30. Джудар Б., Ильиных А.Ю., Чашечкин Ю.Д. Формирование всплывающего вихря при слиянии капли этанола с водой в интрузивном режиме // Доклады РАН. Физика, технические науки. 2024. Т. 517. С. 18–28. doi: 10.31857/S2686740024040046
  31. Djoudar B., Ilinykh A.Yu., Chashechkin Yu.D. Formation of a rising vortex during the merging of an ethanol droplet with water in the intrusive regime // Doklady Phys. 2024; Vol. 517; р. 18–28. doi: 10.31857/S2686740024040046
  32. Chen X., Mandre S., Feng J. Partial coalescence between a drop and a liquid-liquid interface // Phys. of Fluids. 2006;18(5):051705. https://doi.org/10.1063/1.2201470
  33. Wu Z., Hao J., Lu J. et al. Small droplet bouncing on a deep pool // Phys. Fluids. 2020. V. 32(1). 012107. https://doi.org/10.1063/1.5132350

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).