Flow pattern evolution of a nanoparticle suspension drop with water merging in the impact flow mode
- Autores: Chashechkin Y.D1, Ilinykh A.Y.1
-
Afiliações:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Edição: Volume 525, Nº 1 (2025)
- Páginas: 55-69
- Seção: ФИЗИКА
- URL: https://journals.rcsi.science/2686-7400/article/view/375784
- DOI: https://doi.org/10.7868/S3034508125060079
- ID: 375784
Citar
Resumo
The evolution of the substance transfer pattern at the initial stage of merging a drop of nanofluid — a suspension of iron oxide nanoparticles — with tap water was tracked using high-speed video recording for the first time. Experiments were performed in the impact mode, when the kinetic energy of the drop significantly exceeds its potential surface energy (PSE). During merging, the nanofluid drop disintegrates into thin trickles, traces of which form linear and mesh structures on the surface of the crown and cavity. The trickles pierce the walls of the cavity and penetrate into the thickness of the liquid, where they form an intermediate layer. The general geometry of the flow is consistent with the coalescing pattern of a drop of electrolyte — a dilute solution of potassium permanganate. The evolution of the structure over time was traced at the initial stage of drop merging.
Palavras-chave
Sobre autores
Yu. Chashechkin
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: chakin@ipmnet.ru
Moscow, Russian Federation
A. Ilinykh
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Email: ilynykh@ipmnet.ru
Moscow, Russian Federation
Bibliografia
- Worthington A., Cole R. Impact with a liquid surface, studied by the aid of instantaneous photography // Phil. Trans. R. Soc. Lond. A. 1897. V. 189. P. 137–148. https://doi.org/10.1098/rsta.1897.0005
- Fernández-Raga M., Cabeza-Ortega M., González-Castro V. et al. The Use of high-speed cameras as a tool for the characterization of raindrops in splash laboratory studies // Water. 2021. V. 13. P. 2851. https://doi.org/10.3390/w13202851
- Wang H., Liu S., Bayeul-Lainé A.-C. et al. Analysis of high-speed drop impact onto deep liquid pool // J. of Fluid Mech. 2023. V. 972. A31. doi: 10.1017/jfm.2023.701
- Чашечкин Ю.Д. Закономерности распределения вещества свободно падающей окрашенной капли в прозрачной принимающей жидкости (обзор) // Известия РАН. Механика жидкости и газа. 2025. № 1. C. 34–76. doi: 10.1134/S0015462824604315
- Chashechkin Yu. The laws of the matter distribution in a colored free-falling drop in a transparent target fluid (Review) // Fluid Dyn. 2024; Vol. 59 (6), р. 1693–1734. doi: 10.1134/S0015462824604315
- Das S., Choi S., Yu W. et al. Nanofluids: Science and Technology. Wiley-Interscience, 2008. 416 p.
- Awais M., Ullah N., Ahmad J. et al. Heat transfer and pressure drop performance of nanofluid: A state-of-the-art review // Int. J. of Thermofluids. 2021. № 9. P. 100065. https://doi.org/10.1016/j.ijft.2021.100065
- Yang L., Tian J., Ding Y. et al. The physics of phase transition phenomena enhanced by nanoparticles // Appl. Phys. Rev. 2025. V. 12. P. 011307. https://doi.org/10.1063/5.0200714
- Grishaev V., Iorio C., Dubois F. et al. Impact of particle-laden drops: Particle distribution on the substrate // J. of Colloid and Interface Sci. 2017. V. 490(15). P. 108–118. https://doi.org/10.1016/j.jcis.2016.11.038
- Shah P., Driscoll M. Drop impact dynamics of complex fluids: a review // Soft Matter. 2024. V. 20. P. 4839–4858. doi: 10.1039/D4SM00145A
- Yan B., Tang X. Impact Dynamics of Droplet Containing Particle Suspensions on Deep Liquid Pool. Cornell University, 2023. https://doi.org/10.48550/arXiv.2306.16543
- Zhang Y., Mu Z., Wei Y. et al. Evolution of the heavy impacting droplet: Via a vortex ring to a bifurcation flower // Phys. of Fluids. 2021. V. 33. P. 113603. https://doi.org/10.1063/5.0064072
- Peck B., Sigurdson L. The three-dimensional vortex structure of an impacting water drop // Phys. of Fluids. 1994. V. 6(2). P. 564–576. doi: 10.1063/1.868352
- Чашечкин Ю.Д., Ильиных А.Ю. Задержка формирования каверны в интрузивном режиме слияния свободно падающей капли с принимающей жидкостью // Доклады РАН. Физика, технические науки. 2021. Т. 496. С. 34–39. doi: 10.31857/S268674002101003X
- Chashechkin Yu, Ilinykh A. The delay in cavity formation in the intrusive coalescence of a freely falling drop with a target fluid // Doklady Phys. 2021; Vol. 66 (1), р. 20–25. doi: 10.1134/S102833582101002X
- Chashechkin Yu., Ilinykh A. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12(4). P. 374. https://doi.org/10.3390/axioms12040374
- Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества капли при формировании первичной каверны // Доклады РАН. Физика, технические науки. 2023. Т. 508. С. 42–52. doi: 10.31857/S2686740022060062
- Chashechkin Yu., Ilinykh A. Transfer of drop material during the formation of a primary cavern // Doklady Phys. 2023; Vol. 68 (1), р. 1–10. doi: 10.1134/S1028335822120023
- Worthington A. A Study of Splashes. Longmans, Green, and Co.: London, UK, 1908. 96 p. https://www.gutenberg.org/ebooks/39831
- Ilinykh A. Spreading of a Multicomponent drop in water: Solutions and suspensions // Fluid Dyn. & Materials Proc. 2020. V. 16(4). P. 723–735. doi: 10.32604/fdmp.2020.08987
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
- Landau, L.D. and Lifshitz, E.M. Fluid Mechanics, Pergamon Press: Oxford, 1987. 558 p.
- Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10(4). P. 286. https://doi.org/10.3390/axioms10040286
- УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. http://www.ipmnet.ru/uniqequip/gfk/#equip
- GFK IPMech RAS: Hydrophysical Complex for Modeling Hydrodynamic Processes in the Environment and their Impact on Underwater Technical Objects, as well as the Spread of Impurities in the Ocean and Atmosphere. https://ipmnet.ru/uniqequip/gfk/
- Чашечкин Ю.Д., Ильиных А.Ю. Множественные выбросы брызг при ударе капли // Доклады РАН. Физика, технические науки. 2020. Т. 494. С. 42–46. doi: 10.31857/S2686740020050181
- Chashechkin Yu., Ilinykh A. Multiple emissions of splashes upon drop impact // Doklady Phys. 2020; Vol. 65 (10); р. 384–388. doi: 10.1134/S1028335820100067
- Чашечкин Ю.Д. Эволюция тонкоструктурного распределение вещества свободно падающей капли в смешивающихся жидкостях // Изв. РАН. Физ. атм. океана. 2019. Т. 55(3). С. 67–77. doi: 10.1134/S0001433819020026
- Chashechkin Yu. Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids // Izvestiya, Atmospheric and Oceanic Phys. 2019; Vol. 55 (3), р. 285–294. doi: 10.1134/S0001433819020026
- Джудар Б., Ильиных А.Ю., Чашечкин Ю.Д. Формирование всплывающего вихря при слиянии капли этанола с водой в интрузивном режиме // Доклады РАН. Физика, технические науки. 2024. Т. 517. С. 18–28. doi: 10.31857/S2686740024040046
- Djoudar B., Ilinykh A.Yu., Chashechkin Yu.D. Formation of a rising vortex during the merging of an ethanol droplet with water in the intrusive regime // Doklady Phys. 2024; Vol. 517; р. 18–28. doi: 10.31857/S2686740024040046
- Chen X., Mandre S., Feng J. Partial coalescence between a drop and a liquid-liquid interface // Phys. of Fluids. 2006;18(5):051705. https://doi.org/10.1063/1.2201470
- Wu Z., Hao J., Lu J. et al. Small droplet bouncing on a deep pool // Phys. Fluids. 2020. V. 32(1). 012107. https://doi.org/10.1063/1.5132350
Arquivos suplementares

