Flow pattern evolution of a nanoparticle suspension drop with water merging in the impact flow mode

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution of the substance transfer pattern at the initial stage of merging a drop of nanofluid — a suspension of iron oxide nanoparticles — with tap water was tracked using high-speed video recording for the first time. Experiments were performed in the impact mode, when the kinetic energy of the drop significantly exceeds its potential surface energy (PSE). During merging, the nanofluid drop disintegrates into thin trickles, traces of which form linear and mesh structures on the surface of the crown and cavity. The trickles pierce the walls of the cavity and penetrate into the thickness of the liquid, where they form an intermediate layer. The general geometry of the flow is consistent with the coalescing pattern of a drop of electrolyte — a dilute solution of potassium permanganate. The evolution of the structure over time was traced at the initial stage of drop merging.

About the authors

Yu. D Chashechkin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: chakin@ipmnet.ru
Moscow, Russian Federation

A. Yu Ilinykh

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: ilynykh@ipmnet.ru
Moscow, Russian Federation

References

  1. Worthington A., Cole R. Impact with a liquid surface, studied by the aid of instantaneous photography // Phil. Trans. R. Soc. Lond. A. 1897. V. 189. P. 137–148. https://doi.org/10.1098/rsta.1897.0005
  2. Fernández-Raga M., Cabeza-Ortega M., González-Castro V. et al. The Use of high-speed cameras as a tool for the characterization of raindrops in splash laboratory studies // Water. 2021. V. 13. P. 2851. https://doi.org/10.3390/w13202851
  3. Wang H., Liu S., Bayeul-Lainé A.-C. et al. Analysis of high-speed drop impact onto deep liquid pool // J. of Fluid Mech. 2023. V. 972. A31. doi: 10.1017/jfm.2023.701
  4. Chashechkin Yu. The laws of the matter distribution in a colored free-falling drop in a transparent target fluid (Review) // Fluid Dyn. 2024; Vol. 59 (6), р. 1693–1734. doi: 10.1134/S0015462824604315
  5. Das S., Choi S., Yu W. et al. Nanofluids: Science and Technology. Wiley-Interscience, 2008. 416 p.
  6. Awais M., Ullah N., Ahmad J. et al. Heat transfer and pressure drop performance of nanofluid: A state-of-the-art review // Int. J. of Thermofluids. 2021. № 9. P. 100065. https://doi.org/10.1016/j.ijft.2021.100065
  7. Yang L., Tian J., Ding Y. et al. The physics of phase transition phenomena enhanced by nanoparticles // Appl. Phys. Rev. 2025. V. 12. P. 011307. https://doi.org/10.1063/5.0200714
  8. Grishaev V., Iorio C., Dubois F. et al. Impact of particle-laden drops: Particle distribution on the substrate // J. of Colloid and Interface Sci. 2017. V. 490(15). P. 108–118. https://doi.org/10.1016/j.jcis.2016.11.038
  9. Shah P., Driscoll M. Drop impact dynamics of complex fluids: a review // Soft Matter. 2024. V. 20. P. 4839–4858. doi: 10.1039/D4SM00145A
  10. Yan B., Tang X. Impact Dynamics of Droplet Containing Particle Suspensions on Deep Liquid Pool. Cornell University, 2023. https://doi.org/10.48550/arXiv.2306.16543
  11. Zhang Y., Mu Z., Wei Y. et al. Evolution of the heavy impacting droplet: Via a vortex ring to a bifurcation flower // Phys. of Fluids. 2021. V. 33. P. 113603. https://doi.org/10.1063/5.0064072
  12. Peck B., Sigurdson L. The three-dimensional vortex structure of an impacting water drop // Phys. of Fluids. 1994. V. 6(2). P. 564–576. doi: 10.1063/1.868352
  13. Chashechkin Yu, Ilinykh A. The delay in cavity formation in the intrusive coalescence of a freely falling drop with a target fluid // Doklady Phys. 2021; Vol. 66 (1), р. 20–25. doi: 10.1134/S102833582101002X
  14. Chashechkin Yu., Ilinykh A. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12(4). P. 374. https://doi.org/10.3390/axioms12040374
  15. Chashechkin Yu., Ilinykh A. Transfer of drop material during the formation of a primary cavern // Doklady Phys. 2023; Vol. 68 (1), р. 1–10. doi: 10.1134/S1028335822120023
  16. Worthington A. A Study of Splashes. Longmans, Green, and Co.: London, UK, 1908. 96 p. https://www.gutenberg.org/ebooks/39831
  17. Ilinykh A. Spreading of a Multicomponent drop in water: Solutions and suspensions // Fluid Dyn. & Materials Proc. 2020. V. 16(4). P. 723–735. doi: 10.32604/fdmp.2020.08987
  18. Landau, L.D. and Lifshitz, E.M. Fluid Mechanics, Pergamon Press: Oxford, 1987. 558 p.
  19. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10(4). P. 286. https://doi.org/10.3390/axioms10040286
  20. GFK IPMech RAS: Hydrophysical Complex for Modeling Hydrodynamic Processes in the Environment and their Impact on Underwater Technical Objects, as well as the Spread of Impurities in the Ocean and Atmosphere. https://ipmnet.ru/uniqequip/gfk/
  21. Chashechkin Yu., Ilinykh A. Multiple emissions of splashes upon drop impact // Doklady Phys. 2020; Vol. 65 (10); р. 384–388. doi: 10.1134/S1028335820100067
  22. Chashechkin Yu. Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids // Izvestiya, Atmospheric and Oceanic Phys. 2019; Vol. 55 (3), р. 285–294. doi: 10.1134/S0001433819020026
  23. Djoudar B., Ilinykh A.Yu., Chashechkin Yu.D. Formation of a rising vortex during the merging of an ethanol droplet with water in the intrusive regime // Doklady Phys. 2024; Vol. 517; р. 18–28. doi: 10.31857/S2686740024040046
  24. Chen X., Mandre S., Feng J. Partial coalescence between a drop and a liquid-liquid interface // Phys. of Fluids. 2006;18(5):051705. https://doi.org/10.1063/1.2201470
  25. Wu Z., Hao J., Lu J. et al. Small droplet bouncing on a deep pool // Phys. Fluids. 2020. V. 32(1). 012107. https://doi.org/10.1063/1.5132350

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).