Lifting of Deepwater Gas Pipeline

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The analysis of pipeline lifting and lowering operations is given depending on the effective weight and bending rigidity of the pipe, pressures on its walls, reservoir depth, concentrated lifting force. The change in water and gas pressures during lifting and the corresponding nonlinear term in the bending equation are taken into account. The simplest model for accounting for hydrostatic nonlinearity is developed. An insignificant effect of elastic nonlinearity on the bending of a gas pipeline is shown when the reservoir depth is limited. The regimes of controlled lifting force and controlled lifting boom are considered.

About the authors

M. A. Ilgamov

Blagonravov Institute of Machine Science, Russian Academy of Sciences; Institute of Mechanics and Engineering, Kazan Scientific Center; Institute of Mechanics, Ufa Federal Research Center

Author for correspondence.
Email: ilgamov@anrb.ru
Moscow, Russia; Kazan, Russia; Ufa, Russia

References

  1. Pedersen P.T. Equilibrium of offshore cables and pipelines during laying // Int. Shipbuild. Prog. 1975. V. 22. P. 399–408. https://doi.org/10.3233/ISP-1975-2225601
  2. Светлицкий В.А. Механика трубопроводов и шлангов. М.: Машиностроение, 1982. 280 с.
  3. Li S., Karney B.W., Liu G. FSI research in pipeline systems – a review of the literature // J. Fluids and Structures. 2015. V. 57. P. 277–297. https://doi.org/10.1016/j.jfluidstructs.2015.06.020
  4. Guarracino F., Mallardo V. A refined analytical analysis of submerged pipelines in seabed laying // Appl. Ocean Res. 1999. V. 21. P. 281–293. https://doi.org/10.1016/S0141-1187(99)00020-6
  5. Peek R., Yun H. Flotation to trigger lateral buckles in pipelines on a flat seabed // J. Engineering Mechanics. 2007. № 4. P. 442–451. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(442)
  6. Chee J., Walker A., White D. Controlling lateral buckling of subsea pipeline with sinusoidal shape pre-deformation // Ocean Engineering. 2018. V. 151. P. 170–190. https://doi.org/10.1016/j.oceaneng.2018.01.024
  7. Liang H., Zhao Y., Yue Q.J. Experimental study on dynamic interaction between pipe and rollers in deep S-lay // Ocean Engineering. 2019. V. 175. P. 188–196. https://doi.org/10.1016/j.oceaneng.2019.01.030
  8. Wang Z., Tang Y. Study on symmetric buckling mode triggered by dual distributed buoyancy sections for subsea pipelines // Ocean Engineering. 2020. V. 216. P. 105–110. https://doi.org/10.1016/j.oceaneng.2020.108019
  9. Зарипов Р.М., Масалимов Р.Б. Численное моделирование напряженно-деформированного состояния подводного морского газопровода с учетом разжижения грунта и параметров эксплуатации // Изв. РАН. МТТ. 2023. № 4. С. 152–166. https://doi.org/10.31857/S0572329922600700
  10. Xiao Y.Y., Wu Z.W., Wang T.C., Gary A., Ni P.P., Mei G.X. Experimental and numerical investigation on hydrodynamic behavior of a long curved pipeline system with multiple floating bodies in immersion construction // Ocean Engineering. 2023. V. 270. 113629. https://doi.org/10.1016/j.oceaneng.2023.113629
  11. Елисеев В.В., Зиновьева Т.В. Нелинейно-упругая деформация подводного трубопровода в процессе укладки // Вычисл. мех. сплош. сред. 2012. № 1. С. 70–78. https://doi.org/10.7242/1999-6691/2012.5.1.9
  12. Ильгамов М.А. Модель всплытия подводного трубопровода // ДАН. Физика, технические науки. 2022. Т. 504. С. 12–16. https://doi.org/10.31857/S2686740022030087
  13. Ильгамов М.А. Всплытие подводного газового трубопровода // Изв. РАН. МТТ. 2023. № 2. С. 147–159. https://doi.org/10.31857/S0572329922600487
  14. Wang Z., Chen Y., Gao Q., Li F. An analytical method for mechanical analysis of offshore pipelines during lifting operation // Materials. 2023. V. 16. 6685. https://doi.org/10.3390/ma16206685
  15. Ильгамов М.А. Подъем подводного трубопровода сосредоточенной силой // ДАН. Физика, технические науки. 2024. Т. 514. С. 156–161. https://doi.org/10.31857/S2686740024040108

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).