Removal of the stress field singularity for the Williams problem (1952) basing on a non-Euclidean continuum model
- Authors: Guzev M.A.1,2
-
Affiliations:
- aInstitute for Applied Mathematics Far Eastern Branch, Russian Academy of Sciences
- Perm National Research Polytechnic University
- Issue: Vol 517, No 1 (2024)
- Pages: 12-17
- Section: МЕХАНИКА
- URL: https://journals.rcsi.science/2686-7400/article/view/272248
- DOI: https://doi.org/10.31857/S2686740024040037
- EDN: https://elibrary.ru/JPKWKG
- ID: 272248
Cite item
Abstract
A singular solution for the elastic stress field in the Williams problem on the equilibrium of plates with corner cutouts is considered. A scheme has been constructed for the minimal expansion of the classical elastic continuum model without taking into account the Saint-Venant compatibility conditions for deformations, which leads to a non-Euclidean continuum model. Within this model framework, the total stress field is shown to contain no singularity for all cutout angles.
Full Text

About the authors
M. A. Guzev
aInstitute for Applied Mathematics Far Eastern Branch, Russian Academy of Sciences; Perm National Research Polytechnic University
Author for correspondence.
Email: guzev@iam.dvo.ru
Academician of the RAS
Russian Federation, Vladivostok; PermReferences
- Williams M.L. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension // J. Applied Mechanics. 1952. V. 19 (4). P. 526–528. https://authors.library.caltech.edu/records/2zph7-ee089
- Barber J.R. Wedge Problems. In Elasticity. Part of the book series: Solid Mechanics and Its Applications. V. 172. Dordrecht: Springer, 2010. P. 149–170. https://doi.org/10.1007/978-90-481-3809-8_11
- Pan W., Cheng C., Wang F., Hu Z., Li J. Determination of singular and higher order non-singular stress for angularly heterogeneous material notch 292 // Engineering Fracture Mechanics. 2023. 109592. https://doi.org/10.1016/j.engfracmech.2023.109592
- Sinclair G.B. Stress Singularities in Classical Elasticity—I: Removal, Interpretation and Analysis // Applied Mechanics Reviews. 2004. V. 57(4). P. 251–297. http://dx.doi.org/10.1115/1.1762503
- Мясников В.П., Гузев М.А. Геометрическая модель внутренних самоуравновешенных напряжений в твердых телах // ДАН. 2001. Т. 380. № 5. С. 627-629.
- Годунов С.К., Роменский Е. И. Элементы механики сплошных сред и законы сохранения. Новосибирск: Научная книга, ١٩٩٨. 280 c.
- Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005. 584 с.
- Гузев М.А. Структура кинематического и силового поля в Римановой модели сплошной среды // ПМТФ. 2011. Т. 52. № 5. С. 39–48.
- Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. 1108 с.
Supplementary files
