Perovskite-based solar cell in tamm plasmon-polariton structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spectral properties of a solar cell with a photosensitive perovskite layer in a structure with a Tamm plasmon polariton localized at the boundary of a gold nanolattice and a one-dimensional photonic crystal are investigated. The influence of the parameters of the golden lattice on the surface current density and the efficiency of the proposed device is investigated. It is shown that when an aluminum substrate is replaced with a photonic crystal, a Tamm plasmon polariton is excited, which provides an increase in the surface current density by 33.7%, and efficiency by 35.1%.

Full Text

Restricted Access

About the authors

D. A. Pykhtin

L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University

Author for correspondence.
Email: dmitry_pykhtin@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

R. G. Bikbaev

L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University

Email: bikbaev@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

I. V. Timofeev

L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University

Email: tiv@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

S. Ya. Vetrov

L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University

Email: svetrov@sfu-kras.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

V. F. Shabanov

L.V. Kirensky Institute of Physics, FRS KSC SB RAS

Email: shabanov@ksc.krasn.ru

Academician of the RAS

Russian Federation, Krasnoyarsk

References

  1. Шабанов В.Ф., Ветров С.Я. Оптика реальных фотонных кристаллов. Жидкокристаллические дефекты, неоднородности. Новосибирск: Издательство СО РАН, 2005. 209 с.
  2. Shahed-E-Zumrat, Shahid S., Talukder M.A. Dual-wavelength hybrid Tamm plasmonic laser // Optics Express. 2022. V. 30. № 14. P.25234. https://doi.org/10.1364/OE.456249
  3. Huang С., Wu С., Bikbaev R.G. Wavelength-and- Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons // Nanomaterials. 2023. V. 13. № 4. P. 693. https://doi.org/10.3390/nano13040693
  4. Huang S., Chen K., Jeng S. Phase sensitive sensor on Tamm plasmon devices // Optical Materials Express. 2017. V. 7. № 4. P. 1267. https://doi.org/10.1364/OME.7.001267
  5. Kojima A., Teshima K., Shirai Y. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells // J. Amer. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
  6. Sahli F., Werner J., Kamino B.A. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency // Nature Materials. 2018. V. 17. № 9. P. 820. https://doi.org/10.1038/s41563-018-0115-4
  7. Kaliteevski M., Iorsh I., Brand S. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror // Phys. Rev. B. 76. 2007. P. 165415. https://doi.org/10.1103/PhysRevB.76.165415
  8. Bikbaev R.G., Vetrov S.Ya., Timofeev I.V. Tamm Plasmon Polaritons for Light Trapping in Organic Solar Cells // Doklady Physics. 2020. V. 65. № 5. P. 161. https://doi.org/
  9. Bikbaev R.G., Vetrov S.Ya., Timofeev I.V. Nanoparticle Shape Optimization for Tamm-Plasmon-Polariton-Based Organic Solar Cells in the Visible Spectral Range // Photonics. 2022. V. 9. № 11. P. 786. https://doi.org/10.3390/photonics9110786
  10. Taflove A., Hagness S. Computational electrodynamics. Norwood (MA): Artech House, 2005. 169 р.
  11. Haus H.A. Waves and Fields in Optoelectronics. Prentice-Hall series in solid state physical electronics. Old Tappan (NJ): Prentice Hall, 1983. 402 р.
  12. Sandhu S., Yu Z., Fan S. Detailed balance analysis of nanophotonic solar cells // Opt. Express 21. 2013. P. 1209–1217. https://doi.org/10.1364/OE.21.001209

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a solar cell based on a perovskite film with a photonic crystal substrate.

Download (90KB)
3. Fig. 2. Dependences of the real and imaginary parts of the complex refractive index of MAPbI3 perovskite on the wavelength (a); reflection and transmission spectra of the initial FC (b).

Download (120KB)
4. Fig. 3. Dependences of the reflection coefficient of the structure on the wavelength and width at nanowire thicknesses: a – 15 nm, b – 20 nm, c – 25 nm, g – 30 nm, where b is the decimal logarithm of the reflection coefficient.

Download (188KB)
5. Fig. 4. Dependence of the reflection coefficient of the FC-based structure (1) and absorption in the FS in FC-based structures (2) and aluminum-based structures (3) on the wavelength of incident light.

Download (99KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies