Солнечный элемент на основе перовскита в структуре с таммовским плазмон-поляритоном

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы спектральные свойства солнечного элемента с фоточувствительным слоем перовскита в структуре с таммовским плазмон-поляритоном, локализованным на границе золотой нанорешетки и одномерного фотонного кристалла. Исследовано влияние параметров золотой решетки на поверхностную плотность тока и эффективность предложенного устройства. Показано, что при замене алюминиевой подложки на фотонный кристалл возбуждается таммовский плазмон-поляритон, обеспечивающий увеличение поверхностной плотности тока на 33.7%, а эффективности – на 35.1%.

Полный текст

Доступ закрыт

Об авторах

Д. А. Пыхтин

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук – обособленное подразделение ФИЦ КНЦ СО; Сибирский федеральный университет

Автор, ответственный за переписку.
Email: dmitry_pykhtin@iph.krasn.ru
Россия, Красноярск; Красноярск

Р. Г. Бикбаев

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук – обособленное подразделение ФИЦ КНЦ СО; Сибирский федеральный университет

Email: bikbaev@iph.krasn.ru
Россия, Красноярск; Красноярск

И. В. Тимофеев

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук – обособленное подразделение ФИЦ КНЦ СО; Сибирский федеральный университет

Email: tiv@iph.krasn.ru
Россия, Красноярск; Красноярск

С. Я. Ветров

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук – обособленное подразделение ФИЦ КНЦ СО; Сибирский федеральный университет

Email: svetrov@sfu-kras.ru
Россия, Красноярск; Красноярск

В. Ф. Шабанов

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук – обособленное подразделение ФИЦ КНЦ СО

Email: shabanov@ksc.krasn.ru

академик РАН

Россия, Красноярск

Список литературы

  1. Шабанов В.Ф., Ветров С.Я. Оптика реальных фотонных кристаллов. Жидкокристаллические дефекты, неоднородности. Новосибирск: Издательство СО РАН, 2005. 209 с.
  2. Shahed-E-Zumrat, Shahid S., Talukder M.A. Dual-wavelength hybrid Tamm plasmonic laser // Optics Express. 2022. V. 30. № 14. P.25234. https://doi.org/10.1364/OE.456249
  3. Huang С., Wu С., Bikbaev R.G. Wavelength-and- Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons // Nanomaterials. 2023. V. 13. № 4. P. 693. https://doi.org/10.3390/nano13040693
  4. Huang S., Chen K., Jeng S. Phase sensitive sensor on Tamm plasmon devices // Optical Materials Express. 2017. V. 7. № 4. P. 1267. https://doi.org/10.1364/OME.7.001267
  5. Kojima A., Teshima K., Shirai Y. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells // J. Amer. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
  6. Sahli F., Werner J., Kamino B.A. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency // Nature Materials. 2018. V. 17. № 9. P. 820. https://doi.org/10.1038/s41563-018-0115-4
  7. Kaliteevski M., Iorsh I., Brand S. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror // Phys. Rev. B. 76. 2007. P. 165415. https://doi.org/10.1103/PhysRevB.76.165415
  8. Bikbaev R.G., Vetrov S.Ya., Timofeev I.V. Tamm Plasmon Polaritons for Light Trapping in Organic Solar Cells // Doklady Physics. 2020. V. 65. № 5. P. 161. https://doi.org/
  9. Bikbaev R.G., Vetrov S.Ya., Timofeev I.V. Nanoparticle Shape Optimization for Tamm-Plasmon-Polariton-Based Organic Solar Cells in the Visible Spectral Range // Photonics. 2022. V. 9. № 11. P. 786. https://doi.org/10.3390/photonics9110786
  10. Taflove A., Hagness S. Computational electrodynamics. Norwood (MA): Artech House, 2005. 169 р.
  11. Haus H.A. Waves and Fields in Optoelectronics. Prentice-Hall series in solid state physical electronics. Old Tappan (NJ): Prentice Hall, 1983. 402 р.
  12. Sandhu S., Yu Z., Fan S. Detailed balance analysis of nanophotonic solar cells // Opt. Express 21. 2013. P. 1209–1217. https://doi.org/10.1364/OE.21.001209

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схематическое изображение солнечного элемента на основе пленки перовскита с фотоннокристаллической подложкой.

Скачать (90KB)
3. Рис. 2. Зависимости действительной и мнимой части комплексного показателя преломления перовскита MAPbI3 от длины волны (а); спектры отражения и пропускания исходного ФК (б).

Скачать (120KB)
4. Рис. 3. Зависимости коэффициента отражения структуры от длины волны и ширины при толщинах нанополос: a – 15 нм, б – 20 нм, в – 25 нм, г – 30 нм, где b – десятичный логарифм от коэффициента отражения.

Скачать (188KB)
5. Рис. 4. Зависимость коэффициента отражения структуры на основе ФК (1) и поглощения в ФЧС в структурах на основе ФК (2) и на основе алюминия (3) от длины волны падающего света.

Скачать (99KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах