ON CONTACT PROBLEMS FOR TWO STAMPS AND A NEW TYPE OF CRACK MODEL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, for the first time, an exact solution of the contact problem of interaction with a multilayer base of two semi-infinite stamps, the ends of which are parallel to each other, is constructed. Stamps are assumed to be absolutely rigid, and the distance between them can have any finite value. The task is an important stage in the algorithm for constructing models of a new type of crack in materials of different rheologies. The mechanism of destruction of the medium by cracks of a new type is radically different from the mechanism of destruction of the medium by Griffiths cracks, and has so far been poorly studied. Griffiths formed his cracks with a smooth border as a result of compression from the sides of an elliptical cavity in the plate. Cracks of a new type have a piecewise smooth border, resulting from the replacement of an ellipse with a rectangle compressed from the sides. The problem considered in the article can be considered as the result of the formation of a new type of crack with absolutely rigid banks and deformable lower boundary. Thanks to it, after the solution, it becomes possible to switch to deformable stamps and a crack of a new type in the rheological medium. The solution of this problem turned out to be possible due to the construction of exact solutions of the Wiener–Hopf integral equations on a finite segment. The paper shows how the solution of one of the previously unsolved problems allows us to investigate and solve exactly other problems, to identify previously unknown properties and resonances. As a result of constructing an exact solution to the problem, the fact that the solution of dynamic contact problems for stamp systems is not unique was confirmed and a dispersion equation for finding resonant frequencies was constructed.

About the authors

V. A. Babeshko

Southern Scientific Center of the Russian Academy of Sciences; Kuban State University

Author for correspondence.
Email: babeshko41@mail.ru
Russia, Rostov-on-Don; Russia, Krasnodar

O. V. Evdokimova

Southern Scientific Center of the Russian Academy of Sciences

Email: babeshko41@mail.ru
Russia, Rostov-on-Don

O. M. Babeshko

Kuban State University

Email: babeshko41@mail.ru
Russia, Krasnodar

M. V. Zaretskaya

Kuban State University

Email: babeshko41@mail.ru
Russia, Krasnodar

V. S. Evdokimov

Kuban State University

Email: babeshko41@mail.ru
Russia, Krasnodar

References

  1. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М., 1974. 456 с.
  2. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с.
  3. Галин Л.А. Контактные задачи теории упругости и вязкоупругости. М.: Наука, 1980. 303 с.
  4. Штаерман И.Я. Контактная задача теории упругости. М.: Гостехиздат, 1949. 272 с.
  5. Горячева И.Г., Добычин М.Н. Контактные задачи трибологии. М.: Машиностроение, 1988. 256 с.
  6. Papangelo A., Ciavarella M., Barber J.R. Fracture Mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws // Proc. Roy. Soc (London). 2015. A 471 Issue: 2180: Article Number: 20150271.
  7. Ciavarella M. The generalized Cattaneo partial slip plane contact problem // I-Theory, II-Examples, Int. J. Solids Struct. 1998. 35. P. 2349–2378.
  8. Zhou S., Gao X.L. Solutions of half-space and half-plane contact problems based on surface elasticity // Zeitschrift fr angewandte Mathematik und Physik. 2013. T. 64. S. 145–166.
  9. Guler M.A., Erdogan F. The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings // Int. J. Mech. Sci 2007. V. 49. P. 161–182.
  10. Ke L.-L., Wang Y.-S. Two-Dimensional Sliding Frictional Contact of Functionally Graded Materials // Eur. J. Mech. A/Solids. 2007. V. 26. P. 171–188.
  11. Almqvist A., Sahlin F., Larsson R., Glavatskih S. On the dry elasto-plastic contact of nominally flat surfaces // Tribology International. 2007. V. 40 (4). P. 574–579.
  12. Almqvist A. An lcp solution of the linear elastic contact mechanics problem. http://www.mathworks.com/matlabcentral/fileexchange 2013. V. 43216.
  13. Andersson L.E. Existence results for quasistatic contact problems with Coulomb friction // Appl. Math. Optim. 2000. V. 42. P. 169–202.
  14. Cocou M. A class of dynamic contact problems with Coulomb friction in viscoelasticity // Nonlinear Analysis: Real World Applications. 2015. V. 22. P. 508–519.
  15. Cocou M., Rocca R. Existence results for unilateral quasistatic contact problems with friction and adhesion. Math. Modelling and Num. // Analysis. 2000. V. 34. P. 981–1001.
  16. Kikuchi N., Oden J. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods // SIAM Studies in Applied Mathematics. 1988. SIAM, Philadelphia.
  17. Raous M., Cangeґmi L., Cocou M. A consistent model coupling adhesion, friction, and unilateral contact // Comput. Meth. Appl. Mech. Engrg. 1999. V. 177. P. 383–399.
  18. Shillor M., Sofonea M., Telega J.J. Models and Analysis of Quasistatic Contact // Lect. Notes Phys. 655. B., Heidelberg: Springer, 2004.
  19. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Зарецкая М.В., Евдокимов В.С. Точное решение уравнения Винера-Хопфа на отрезке для контактных задач и задач теории трещин в слоистой среде // Доклады РАН. Физика, технические науки. 2023. Т. 509. С. 39–44.
  20. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the possibility of predicting some types of earthquake by a mechanical approach // Acta Mechanica. 2018. V. 229. № 5. P. 2163–2175. https://doi.org/10.1007/s00707-017-2092-0
  21. Babeshko V.A., Evdokimova O.V., Babeshko O.M. Earthquakes and cracks of new type complementing the Griffith-Irvin’s crack. Ch. 2 // Advanced Structured Materials Editors H. Altenbach, V.A. Eremeyev, L.A. Igumnov. Springer. 2021. P. 11–26. https://doi.org/10.1007/978-3-030-54928-2
  22. Морозов Н.Ф. Математические вопросы теории трещин. М.: Наука, 1984. 256 с.
  23. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Сингулярные решения контактных задач и блочные элементы // ДАН. 2017. Т. 475. № 1. С. 34–38. https://doi.org/10.1134/S1028335817070011
  24. Бабешко В.А. О неединственности решений динамических смешанных задач для систем штампов // ДАН СССР. 1990. Т. 310. № 6. С. 1327–1334.
  25. Бабешко В.А., Евдокимова О.В., Бабешко О.М. // Об одной механической модели самоорганизации наночастиц // МТТ. 2022. № 6. С. 12–18. https://doi.org/10.31857/S0572329922060034

Copyright (c) 2023 В.А. Бабешко, О.В. Евдокимова, О.М. Бабешко, М.В. Зарецкая, В.С. Евдокимов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies