FUNCTIONAL DIVERSIFICATION OF THE CAROTENOID-CIS-TRANS-ISOMERASES CrtISO, CrtISO-L1, AND CrtISO-L2 IN TOMATO SPECIES (SOLANUM, SECTION LYCOPERSICON)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The expression of the genes of carotenoid-cis-trans isomerases CrtISO, CrtISO-L1 and CrtISO-L2 was studied in comparison with the content of carotenoids in tomato species with different ripe fruit colors: green (Solanum habrochaites), yellow (S. cheesmaniae) and red (S. pimpinellifolium and S. lycopersicum). More ancient origin of CrtISO-L2 was shown in relation to CrtISO and CrtISO-L1. A similar content of total carotenoids (leaves) and β-carotene (ripe fruits) was found between the samples. Unlike fruits of S. habrochaites and S. cheesmaniae, red fruits accumulated lycopene and 20-30 times more total carotenoids. The highest level of transcripts both in leaves and in ripe fruits was detected for CrtISO. The CrtISO-L1 and CrtISO-L2 were transcribed high in leaves and low in fruits, except for the high expression of CrtISO-L2 in S. lycopersicum fruits. No relationship was observed between the content of carotenoids and the level of gene expression in the fruit. In the leaves, a positive correlation between the amount of carotenoids and the levels of CrtISO-L1 and CrtISO-L2 transcripts was found.

作者简介

G. Efremov

Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences"

编辑信件的主要联系方式.
Email: gleb_efremov@mail.ru
Russian Federation, Moscow

A. Shchennikova

Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences"

Email: gleb_efremov@mail.ru
Russian Federation, Moscow

E. Kochieva

Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences"

Email: gleb_efremov@mail.ru
Russian Federation, Moscow

参考

  1. Sandmann G. // New Phytol. 2021. V. 232. P. 479–493.
  2. Wei J., Xu M., Zhang D., et al. // Acta Biochim. Biophys. Sin. (Shanghai). 2010. V. 42. P. 457.
  3. Duduit J.R., Kosentka P.Z., Miller M.A., et al. // Hortic. Res. 2022. V. 9. Article uhac084.
  4. Valenta K., Kalbitzer U., Razafimandimby D., et al. // Sci. Rep. 2018. V. 8. P. 14302.
  5. Fantini E., Falcone G., Frusciante S., et al. // Plant Physiol. 2013. V. 163. P. 986.
  6. Efremov G.I., Dzhos E.A., Ashikhmin A.A., et al. // Russ. J. Plant. Physiol. 2022. V. 69. P. 352–362.
  7. Isaacson T., Ronen G., Zamir D., et al. // Plant Cell. 2002. V. 14. P. 333.
  8. Peralta I.E., Spooner D.M., Knapp S. // Systematic Botany Monographs. 2008. V. 84. P. 1–186.
  9. Sato S., Tabata S., Hirakawa H., et al. // Nature. 2012. V. 485. P. 635–641.
  10. Osorio C.E. // Front. Plant Sci. 2019. V. 10. Article 1235.
  11. D'Andrea L., Rodriguez-Concepcion M. // Front. Plant Sci. 2019. V. 10. Article 1071.
  12. Kilambi H.V., Manda K., Rai A., et al. // J. Exp. Bot. 2017. V. 68. P. 4803-4819.
  13. Pinheiro T.T., Peres L.E.P., Purgatto E., et al. // Plant Cell Rep. 2019. V. 38. P. 623.
  14. Park H., Kreunen S.S., Cuttriss A.J., et al. // Plant Cell. 2002. V. 14. P. 321–332.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (198KB)
3.

下载 (443KB)
4.

下载 (389KB)
##common.cookie##