FUNCTIONAL DIVERSIFICATION OF THE CAROTENOID-CIS-TRANS-ISOMERASES CrtISO, CrtISO-L1, AND CrtISO-L2 IN TOMATO SPECIES (SOLANUM, SECTION LYCOPERSICON)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The expression of the genes of carotenoid-cis-trans isomerases CrtISO, CrtISO-L1 and CrtISO-L2 was studied in comparison with the content of carotenoids in tomato species with different ripe fruit colors: green (Solanum habrochaites), yellow (S. cheesmaniae) and red (S. pimpinellifolium and S. lycopersicum). More ancient origin of CrtISO-L2 was shown in relation to CrtISO and CrtISO-L1. A similar content of total carotenoids (leaves) and β-carotene (ripe fruits) was found between the samples. Unlike fruits of S. habrochaites and S. cheesmaniae, red fruits accumulated lycopene and 20-30 times more total carotenoids. The highest level of transcripts both in leaves and in ripe fruits was detected for CrtISO. The CrtISO-L1 and CrtISO-L2 were transcribed high in leaves and low in fruits, except for the high expression of CrtISO-L2 in S. lycopersicum fruits. No relationship was observed between the content of carotenoids and the level of gene expression in the fruit. In the leaves, a positive correlation between the amount of carotenoids and the levels of CrtISO-L1 and CrtISO-L2 transcripts was found.

Sobre autores

G. Efremov

Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences"

Autor responsável pela correspondência
Email: gleb_efremov@mail.ru
Russian Federation, Moscow

A. Shchennikova

Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences"

Email: gleb_efremov@mail.ru
Russian Federation, Moscow

E. Kochieva

Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences"

Email: gleb_efremov@mail.ru
Russian Federation, Moscow

Bibliografia

  1. Sandmann G. // New Phytol. 2021. V. 232. P. 479–493.
  2. Wei J., Xu M., Zhang D., et al. // Acta Biochim. Biophys. Sin. (Shanghai). 2010. V. 42. P. 457.
  3. Duduit J.R., Kosentka P.Z., Miller M.A., et al. // Hortic. Res. 2022. V. 9. Article uhac084.
  4. Valenta K., Kalbitzer U., Razafimandimby D., et al. // Sci. Rep. 2018. V. 8. P. 14302.
  5. Fantini E., Falcone G., Frusciante S., et al. // Plant Physiol. 2013. V. 163. P. 986.
  6. Efremov G.I., Dzhos E.A., Ashikhmin A.A., et al. // Russ. J. Plant. Physiol. 2022. V. 69. P. 352–362.
  7. Isaacson T., Ronen G., Zamir D., et al. // Plant Cell. 2002. V. 14. P. 333.
  8. Peralta I.E., Spooner D.M., Knapp S. // Systematic Botany Monographs. 2008. V. 84. P. 1–186.
  9. Sato S., Tabata S., Hirakawa H., et al. // Nature. 2012. V. 485. P. 635–641.
  10. Osorio C.E. // Front. Plant Sci. 2019. V. 10. Article 1235.
  11. D'Andrea L., Rodriguez-Concepcion M. // Front. Plant Sci. 2019. V. 10. Article 1071.
  12. Kilambi H.V., Manda K., Rai A., et al. // J. Exp. Bot. 2017. V. 68. P. 4803-4819.
  13. Pinheiro T.T., Peres L.E.P., Purgatto E., et al. // Plant Cell Rep. 2019. V. 38. P. 623.
  14. Park H., Kreunen S.S., Cuttriss A.J., et al. // Plant Cell. 2002. V. 14. P. 321–332.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (198KB)
3.

Baixar (443KB)
4.

Baixar (389KB)

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies