EXPRESSION LEVEL OF FLOWERING TIME GENES (CONZ1, GIGZ1A, GIGZ1B, FKF1A, FKF1B) IN SEEDLINGS UNDER LONG DAY CONDITIONS DIFFERENTIATES EARLY AND LATE ZEA MAYS L.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Twenty inbred lines of maize Zea mays L. were characterized by the duration of phenophases, including the timing of flowering and ripeness. The expression of key genes for initiation of flowering, CONZ1, GIGZ1a, GIGZ1b, ZmFKF1a, and ZmFKF1b, was studied in seedlings of six maize lines with different ripeness periods under long photoperiod conditions. A significantly lower level of transcripts of all five genes was found in early ripening lines in comparison with late ripening accessions. A similar expression of the paralogous GIGZ1a and GIGZ1b genes was shown, as well as a significant predominance of ZmFKF1a expression in comparison with its paralogous gene ZmFKF1b.

About the authors

D. Kh. Arkhestova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Institute of Agriculture, Branch of Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow; Russian Federation, Nalchik

O. K. Anisimova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow

E. Z. Kochieva

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow

A. V. Shchennikova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: shchennikova@yandex.ru
Russian Federation, Moscow

References

  1. Miller T.A., Muslin E.H., Dorweiler J.E. // Planta. 2008. V. 227 (6). P. 1377–1388.
  2. Liu L., Wu Y., Liao Z., et al. // Heredity (Edinb). 2018. V. 120 (4). P. 310–328.
  3. Sawa M., Nusinow D.A., Kay S.A., et al. // Science. 2007. V. 318. P. 261–265.
  4. Kami C., Lorrain S., Hornitschek P., et al. // Curr. Top. Dev. Biol. 2010. V. 91. P. 29–66.
  5. Mishra P., Panigrahi K.C. // Front. Plant Sci. 2015. V. 6. P. 8.
  6. Ronald J., McCarthy K., Davis S.J. // Mol. Plant. 2020. V. 13 (3). P. 357–359.
  7. Ke Q., Kim H.S., Wang Z., et al. // Plant Biotechnol. J. 2017. V. 15 (3). P. 331–343.
  8. Kim W.Y., Fujiwara S., Suh S.S., et al. // Nature. 2007. V. 449. P. 356–360.
  9. Matsuoka Y., Vigouroux Y., Goodman M.M., et al. // Proc. Natl. Acad. Sci. USA. 2002. V. 99 (9). P. 6080–6084.
  10. Chen Q., Zhong H., Fan X.W., et al. // Plant, Cell & Environment. 2015. V. 38 (8). P. 1479–1489.
  11. Bendix C., Mendoza J.M., Stanley D.N., et al. // Plant Cell Environ. 2013. V. 36 (7). P. 1379–1390.
  12. Li Z., Gao F., Liu Y., et al. // Plant Sci. 2023. V. 332. P. 111701.
  13. Rubio V., Deng X.W. // Science. 2007. V. 318 (5848). P. 206–207.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (259KB)

Copyright (c) 2023 Д.Х. Архестова, О.К. Анисимова, Е.З. Кочиева, А.В. Щенникова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies