EXPRESSION LEVEL OF FLOWERING TIME GENES (CONZ1, GIGZ1A, GIGZ1B, FKF1A, FKF1B) IN SEEDLINGS UNDER LONG DAY CONDITIONS DIFFERENTIATES EARLY AND LATE ZEA MAYS L.

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Twenty inbred lines of maize Zea mays L. were characterized by the duration of phenophases, including the timing of flowering and ripeness. The expression of key genes for initiation of flowering, CONZ1, GIGZ1a, GIGZ1b, ZmFKF1a, and ZmFKF1b, was studied in seedlings of six maize lines with different ripeness periods under long photoperiod conditions. A significantly lower level of transcripts of all five genes was found in early ripening lines in comparison with late ripening accessions. A similar expression of the paralogous GIGZ1a and GIGZ1b genes was shown, as well as a significant predominance of ZmFKF1a expression in comparison with its paralogous gene ZmFKF1b.

Sobre autores

D. Arkhestova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Institute of Agriculture, Branch of Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow; Russian Federation, Nalchik

O. Anisimova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow

E. Kochieva

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow

A. Shchennikova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: shchennikova@yandex.ru
Russian Federation, Moscow

Bibliografia

  1. Miller T.A., Muslin E.H., Dorweiler J.E. // Planta. 2008. V. 227 (6). P. 1377–1388.
  2. Liu L., Wu Y., Liao Z., et al. // Heredity (Edinb). 2018. V. 120 (4). P. 310–328.
  3. Sawa M., Nusinow D.A., Kay S.A., et al. // Science. 2007. V. 318. P. 261–265.
  4. Kami C., Lorrain S., Hornitschek P., et al. // Curr. Top. Dev. Biol. 2010. V. 91. P. 29–66.
  5. Mishra P., Panigrahi K.C. // Front. Plant Sci. 2015. V. 6. P. 8.
  6. Ronald J., McCarthy K., Davis S.J. // Mol. Plant. 2020. V. 13 (3). P. 357–359.
  7. Ke Q., Kim H.S., Wang Z., et al. // Plant Biotechnol. J. 2017. V. 15 (3). P. 331–343.
  8. Kim W.Y., Fujiwara S., Suh S.S., et al. // Nature. 2007. V. 449. P. 356–360.
  9. Matsuoka Y., Vigouroux Y., Goodman M.M., et al. // Proc. Natl. Acad. Sci. USA. 2002. V. 99 (9). P. 6080–6084.
  10. Chen Q., Zhong H., Fan X.W., et al. // Plant, Cell & Environment. 2015. V. 38 (8). P. 1479–1489.
  11. Bendix C., Mendoza J.M., Stanley D.N., et al. // Plant Cell Environ. 2013. V. 36 (7). P. 1379–1390.
  12. Li Z., Gao F., Liu Y., et al. // Plant Sci. 2023. V. 332. P. 111701.
  13. Rubio V., Deng X.W. // Science. 2007. V. 318 (5848). P. 206–207.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (259KB)

Declaração de direitos autorais © Д.Х. Архестова, О.К. Анисимова, Е.З. Кочиева, А.В. Щенникова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies