EXPRESSION LEVEL OF FLOWERING TIME GENES (CONZ1, GIGZ1A, GIGZ1B, FKF1A, FKF1B) IN SEEDLINGS UNDER LONG DAY CONDITIONS DIFFERENTIATES EARLY AND LATE ZEA MAYS L.

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Twenty inbred lines of maize Zea mays L. were characterized by the duration of phenophases, including the timing of flowering and ripeness. The expression of key genes for initiation of flowering, CONZ1, GIGZ1a, GIGZ1b, ZmFKF1a, and ZmFKF1b, was studied in seedlings of six maize lines with different ripeness periods under long photoperiod conditions. A significantly lower level of transcripts of all five genes was found in early ripening lines in comparison with late ripening accessions. A similar expression of the paralogous GIGZ1a and GIGZ1b genes was shown, as well as a significant predominance of ZmFKF1a expression in comparison with its paralogous gene ZmFKF1b.

作者简介

D. Arkhestova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Institute of Agriculture, Branch of Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow; Russian Federation, Nalchik

O. Anisimova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow

E. Kochieva

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow

A. Shchennikova

Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shchennikova@yandex.ru
Russian Federation, Moscow

参考

  1. Miller T.A., Muslin E.H., Dorweiler J.E. // Planta. 2008. V. 227 (6). P. 1377–1388.
  2. Liu L., Wu Y., Liao Z., et al. // Heredity (Edinb). 2018. V. 120 (4). P. 310–328.
  3. Sawa M., Nusinow D.A., Kay S.A., et al. // Science. 2007. V. 318. P. 261–265.
  4. Kami C., Lorrain S., Hornitschek P., et al. // Curr. Top. Dev. Biol. 2010. V. 91. P. 29–66.
  5. Mishra P., Panigrahi K.C. // Front. Plant Sci. 2015. V. 6. P. 8.
  6. Ronald J., McCarthy K., Davis S.J. // Mol. Plant. 2020. V. 13 (3). P. 357–359.
  7. Ke Q., Kim H.S., Wang Z., et al. // Plant Biotechnol. J. 2017. V. 15 (3). P. 331–343.
  8. Kim W.Y., Fujiwara S., Suh S.S., et al. // Nature. 2007. V. 449. P. 356–360.
  9. Matsuoka Y., Vigouroux Y., Goodman M.M., et al. // Proc. Natl. Acad. Sci. USA. 2002. V. 99 (9). P. 6080–6084.
  10. Chen Q., Zhong H., Fan X.W., et al. // Plant, Cell & Environment. 2015. V. 38 (8). P. 1479–1489.
  11. Bendix C., Mendoza J.M., Stanley D.N., et al. // Plant Cell Environ. 2013. V. 36 (7). P. 1379–1390.
  12. Li Z., Gao F., Liu Y., et al. // Plant Sci. 2023. V. 332. P. 111701.
  13. Rubio V., Deng X.W. // Science. 2007. V. 318 (5848). P. 206–207.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (259KB)

版权所有 © Д.Х. Архестова, О.К. Анисимова, Е.З. Кочиева, А.В. Щенникова, 2023
##common.cookie##