THE NCoR CO-REPRESSOR INTERACTS WITH THE KAISO TRANSCRIPTION FACTOR THROUGH A MECHANISM DIFFERENT FROM THAT OF BCL6 INTERACTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The vertebrate transcription factor Kaiso binds specifically to methylated DNA sequences using C2H2-type zinc fingers. In addition to C2H2-domains, the BTB/POZ domain, which forms homodimers, is located at the N-terminus of Kaiso. Kaiso, like several other well-studied BTB/POZ proteins, including BCL6, interacts with the NCoR (nuclear co-repressor) protein, which determines the landing of transcriptional repressive complexes on chromatin. Using the yeast two-hybrid system, we have shown that the N-terminal domain of NCoR interacts with the C-terminal zinc fingers of Kaiso, and not with its BTB/POZ domain, as previously assumed. The results obtained demonstrate that NCoR interacts with various transcription factor domains, which can increase the efficiency of attracting NCoR-dependent repressor complexes to regulatory regions of the genome.

About the authors

K. I. Balagurov

Institute of Gene Biology, Russian Academy of Sciences

Author for correspondence.
Email: kostya.chamomilla@gmail.com
Russian Federation, Moscow

P. G. Georgiev

Institute of Gene Biology, Russian Academy of Sciences

Email: kostya.chamomilla@gmail.com
Russian Federation, Moscow

A. N. Bonchuk

Institute of Gene Biology, Russian Academy of Sciences

Email: kostya.chamomilla@gmail.com
Russian Federation, Moscow

References

  1. Prokhortchouk A., Hendrich B., Jorgensen H., et al. // Genes and Development. 2001. V. 15,13. P. 1613–1618.
  2. Yoon H., Chan D., Reynolds A., et al. // Molecular Cell. 2003. V. 12,3. P. 723–734.
  3. Mottis A., Mouchiroud L., Auwerx J. // Genes and Development. 2013. V. 27,8. P. 819–835.
  4. Yu J., Li Y., Ishizuka T., et al. // EMBO Journal. 2003. V. 22,13. P. 3403–3410.
  5. Guenther M.G., Barak O., Lazar M. A. // Molecular and Cellular biology. 2001. V. 21,18. P. 6091–6101.
  6. Horlein A.J., Naar A.M., Heinzel T., et al. // Nature. 1995. V. 377. P. 397–404.
  7. Park D.M., Li J., Okamoto H., et al. // Cell Cycle. 2007. V. 6,4. P. 467–470.
  8. Ahmad K., Melnick A., Lax S., et al. // Molecular Cell. 2003. V. 12,6. P. 1551–1564.
  9. Bilic I., Koesters C., Unger B., et al. // Nature Immunology. 2006. V. 7,4. P. 392–400.
  10. Huynh K.D., Bardwell V.J. // Oncogene. 1998. V. 17. P. 2473–2484.
  11. Zacharchenko T., Wright S. // IUCrJ. 2021. V. 8. P. 154–160.
  12. Buck-Koehntop B.A., Stanfield R.L., Ekiert D.C., et al. // PNAS. 2012. V. 109,38. P. 15229–15234.
  13. Jumper J., Evans R., Pritzel A., et al. // Nature. 2021. V. 596,7873. P. 583–589.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (143KB)
3.

Download (641KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies