PHOSPHOLIPID COMPOSITION OF FINGERLINGS OF ATLANTIC SALMON SALMO SALAR DURING GROWTH AND DEVELOPMENT IN AQUACULTURE: THE EFFECT OF DIFFERENT LIGHTING AND FEEDING REGIMES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of different modes of feeding and lighting (natural and continuous) on the phospholipid composition of Atlantic salmon fingerlings reared under commercial aquaculture in the summer-autumn period in North Ossetia-Alania was studied. Qualitative and quantitative determination of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, lysophosphatidylcholine, sphingomyelin was carried out by high performance liquid chromatography. A decrease (September-November) The content of the studied phospholipids in fingerlings decreased, which should be considered primarily as a biochemical adaptation of development, preparation of juveniles for the upcoming smoltification. The effects of lighting and feeding regime on phospholipid composition were found mainly in fish reared under constant lighting and 24/7 feeding and fish reared under natural light and feeding during daylight hours, however, the observed changes were not specific to a particular experimental group of fish in the framework of this study.

Авторлар туралы

S. Murzina

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: murzina.svetlana@gmail.com
Russian Federation, Petrozavodsk

D. Provotorov

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: murzina.svetlana@gmail.com
Russian Federation, Petrozavodsk

V. Voronin

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: murzina.svetlana@gmail.com
Russian Federation, Petrozavodsk

D. Manoilova

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: murzina.svetlana@gmail.com
Russian Federation, Petrozavodsk

A. Kuritcyn

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: murzina.svetlana@gmail.com
Russian Federation, Petrozavodsk

S. Pekkoeva

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: murzina.svetlana@gmail.com
Russian Federation, Petrozavodsk

N. Nemova

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: murzina.svetlana@gmail.com
Russian Federation, Petrozavodsk

Әдебиет тізімі

  1. Крепс Е.М. Липиды клеточных мембран. Эволюция липидов мозга. Адаптационная функция липидов. СПб: Наука, 1981. 339 с.
  2. Болдырев А.А., Кяйвяряйнен Е.И., Илюха В.А. Биомембранология: учебное пособие. Петрозаводск: КарНЦ РАН, 2006. 226 с.
  3. Рабинович А.Л., Рипатти П.О. О конформационных свойствах и функциях докозагексаеновой кислоты // Доклады АНССР. 1990. Т. 314. № 3. С. 752–756.
  4. Лось Д.А. Структура, регуляция экспрессии и функционирование десатураз жирных кислот // Успехи биологической химии. 2001. Т. 41. С. 163–198.
  5. Kraffe E., Marty Y., Guderley H. Changes in mitochondrial oxidative capacity during thermal acclimation of rainbow trout: roles of membrane proteins, phospholipids and its fatty acid composition // J. Exper. Biology. 2007. V. 210. P. 149–165.
  6. Daum G. Lipids of Mitochondria // Biochim. Biophys. Acta. 1985. V. 822. P. 1–42.
  7. Немова Н.Н., Нефедова З.А., Мурзина С.А. и др. Влияние экологических условий обитания на динамику жирных кислот у молоди атлантического лосося (Salmo salar L.) // Экология. 2015. № 3. С. 206–211.
  8. Shulgina N.S., Churova M.V., Murzina S.A. et al. The effect of continuous light on growth and muscle-specific gene expression in Atlantic salmon (Salmo salar) yearlings // Life. 2021. V. 11. № 4. P. 328.
  9. Murzina S.A., Voronin V.P., Churova M.V. et al. The Effects of Low-Level Helium–Neon (He–Ne) Laser Irradiation on Lipids and Fatty Acids, and the Activity of Energetic Metabolism Enzymes and Proteome in the Blastula Stage and Underyearlings of the Atlantic Salmon Salmo salar: A Novel Approach in Salmonid Restoration Procedures in the North // Biomolecules. 2022. V. 12 (1). P. 133.
  10. Folch J., Lees M., Sloan-Stanley G.H. A simple method for the isolation and purification of total lipids animal tissue (for brain, liver and muscle) // J. Biol. Chem. 1957. V. 226. P. 497–509.
  11. Arduini A., Peschechera A., Dottori S. et al. High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies // J. Lipid Res. 1996. V. 37. P. 684–689.
  12. Кабаков Р.И. R в действии: Анализ и визуализация данных в программе. М.: ДМК Пресс, 2016. 580 с.
  13. Bruce P., Bruce A., Gedeck P. Practical statistics for data scientists: 50+ essential concepts using R and Python. // O’Reilly Media, 2020.
  14. Мурзина С.А., Провоторов Д.С., Воронин В.П. и др. Показатели липидного обмена у сеголеток атлантического лосося Salmo salar в условиях аквакультуры в южном регионе РФ при разных режимах освещения и кормления // Известия РАН. 2023. В печати.
  15. Sheridan M.A. Alterations in lipid metabolism accompanying smoltification and seawater adaptation of salmonid fish // Aquaculture. 1989. V. 82 (1–4). P. 191–204.
  16. Геннис Р. Биомембраны: Молекулярная структура и функции. М.: Мир, 1997. 624 с.
  17. Verma S.K., Leikina E., Melikov K. et al. Cell-surface phosphatidylserine regulates osteoclast precursor fusion // JBC. 2017. P. 254–270. https://doi.org/10.1074/jbc.M117.809681
  18. Ипатова О.М. Фосфоглив: механизм действия и применение в клинике. М.: ГУНИИ биомедицинской химии РАМН, 2005. 318 с.
  19. Berrigge M.J. Inositol Triphosphate and Diacylglycerol: Two Interacting Second Messengers // Ann. Rev. Biochem. 1987. V. 56. P. 159–193.
  20. Kishimoto A.Y., Takai Y., Mori T. et al. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover // Journal of Biological Chemistry. 1980. V. 255. № 6. P. 2273–2276.
  21. Kim Y.J., Guzman-Hernandez M.L., Balla T. Inositol lipid regulation of lipid transfer in specialized membrane domains // Trends in Cell Biology. 2013. V. 23. № 6. P. 270–278.
  22. Tocher D.R. Glycerophospholipid metabolism. In: Hochachka P.W., Mommsen T.P. (Eds.), Biochemistry and Molecular Biology of Fishes. Metabolic and Adaptational Biochemistry, vol. 4. Elsevier Press, Amsterdam, 1995. P. 119–157.
  23. Tocher D.R., Bendiksen E., Campbell P., Bell J. The role of phospholipids in nutrition and metabolism of Teleost fish // Aquaculture. 2008. V. 280. P. 21–34.
  24. Sawyer N., Cauchon E., Chateauneuf A. et al. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2 // Br J Pharmacol. 2002. V. 137 (8). P. 1163–72.
  25. Hanna V.S., Hafez E.A.A. Synopsis of arachidonic acid metabolism: a review //Journal of advanced research. 2018. V. 11. P. 23–32.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (194KB)

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>