Axis "microbiota – gut – eye": a review
- Authors: Zakharova I.N.1, Berezhnaya I.V.1, Dmitrieva D.K.1,2, Pupykina V.V.1
-
Affiliations:
- Russian Medical Academy of Continuous Professional Education
- Bashlyaeva Children's City Clinical Hospital
- Issue: No 2 (2024)
- Pages: 179-186
- Section: Articles
- URL: https://journals.rcsi.science/2658-6630/article/view/268349
- DOI: https://doi.org/10.26442/26586630.2024.2.202976
- ID: 268349
Cite item
Full Text
Abstract
Every organ in the human body has its own microbiota, and the eye, a complex multi-component organ, is no exception. Due to the limitations of traditional methods, detailed study of the ocular microbiome began only in 2010 as part of the Eye Microbiome Project, when advances in research methods made it possible to obtain detailed data, although there had been debate previously about whether microorganisms were even able to attach to the ocular surface due to the layers of the tear film, which have antibacterial properties. The cornea, conjunctiva, lacrimal glands and tear film, meibomian glands and microbiome form the microenvironment of the ocular surface, interacting together and resisting irritants, allergens and pathogens. Homeostasis of the ocular microbiota is critical for maintaining the health of the visual organ. Most microorganisms are found on the cornea and conjunctiva, and modern research methods, including 16S rRNA sequencing, have allowed us to establish the "core" of the ocular surface microbiota, identifying the most common types: Staphylococcus, Corynebacterium, Propionibacterium, and Streptococcus, although the exact composition of the “core” remains debatable. Many factors can influence the composition of the microbiome, including age, contact lens wear, ophthalmic medications, and antibiotics. Like the microbiome of many other organs, the ocular surface microbiome is influenced by the gut microbiome: this relationship has been called the "microbiota – gut – eye" axis. Within the "gut – eye" axis, healthy gut microbiota produce short-chain fatty acids, indoles, polyamines, and other substances that have a beneficial effect on the immune system and retinal health. The state of dysbiosis leads to disruption of homeostasis, and the increasing inflammatory reaction can contribute to damage to the optic nerve and progression of eye disease. Some ophthalmologic diseases, such as diabetic retinopathy, age-related macular degradation, choroidal neovascularization, uveitis, primary open-angle glaucoma, Sjogren's syndrome, dry eye syndrome are associated with dysbiosis of the intestinal microbial composition. Correction of intestinal dysbiosis using various methods can lead to a decrease in the risk of eye diseases, although additional research is needed to discover new methods for treating ophthalmologic pathologies along the "microbiota – gut – eye" axis.
Full Text
##article.viewOnOriginalSite##About the authors
Irina N. Zakharova
Russian Medical Academy of Continuous Professional Education
Author for correspondence.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598
D. Sci. (Med.), Prof.
Russian Federation, MoscowIrina V. Berezhnaya
Russian Medical Academy of Continuous Professional Education
Email: berezhnaya-irina26@yandex.ru
ORCID iD: 0000-0002-2847-6268
Cand. Sci. (Med.)
Russian Federation, MoscowDiana K. Dmitrieva
Russian Medical Academy of Continuous Professional Education; Bashlyaeva Children's City Clinical Hospital
Email: dmitrievadi@mail.ru
ORCID iD: 0000-0002-1593-0732
Graduate Student
Russian Federation, Moscow; MoscowViktoria V. Pupykina
Russian Medical Academy of Continuous Professional Education
Email: vika-pupykina@mail.ru
ORCID iD: 0000-0003-2181-8138
Graduate Student
Russian Federation, MoscowReferences
- Zhang X, M VJ, Qu Y, et al. Dry eye management: Targeting the ocular surface microenvironment. Int J Mol Sci. 2017;18(7):1398. doi: 10.3390/ijms18071398
- Kureshi AK, Dziasko M, Funderburgh JL, Daniels JT. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents. Sci Rep. 2015;5:16186. doi: 10.1038/srep16186
- Paulsen FP, Berry MS. Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem. 2006;41(1):1-53. doi: 10.1016/j.proghi.2006.03.001
- Zhang X, Volpe EA, Gandhi NB, et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One. 2012;7(5):e36822. doi: 10.1371/journal.pone.0036822
- Conrady CD, Joos ZP, Patel BC. Review: The lacrimal gland and its role in dry eye. J Ophthalmol. 2016;2016:7542929. doi: 10.1155/2016/7542929
- Call M, Fischesser K, Lunn MO, Kao WW. A unique lineage gives rise to the meibomian gland. Mol Vis. 2016;22:168-76. PMID: 26957900
- Keilty RA. The bacterial flora of the normal conjunctiva with comparative nasal culture study. Am J Ophthalmol. 1930;13(10):876-9.
- Pucker AD, Haworth KM. The presence and significance of polar meibum and tear lipids. Ocul Surf. 2015;13(1):26-42. doi: 10.1016/j.jtos.2014.06.002
- Klenkler B, Sheardown H, Jones L. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf. 2007;5(3):228-39. doi: 10.1016/s1542-0124(12)70613-4
- Reading NC, Sperandio V. Quorum sensing: The many languages of bacteria. FEMS Microbiol Lett. 2006;254(1):1-11. doi: 10.1111/j.1574-6968.2005.00001.x
- Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99-105. doi: 10.1016/j.exer.2013.06.003
- Ueta M, Kinoshita S. Innate immunity of the ocular surface. Brain Res Bull. 2010;81(2-3):219-28. doi: 10.1016/j.brainresbull.2009.10.001
- Su CS, Bowden S, Fong LP, Taylor HR. Detection of hepatitis B virus DNA in tears by polymerase chain reaction. Arch Ophthalmol. 1994;112(5):621-5. doi: 10.1001/archopht.1994.01090170065024
- Kaufman HE, Azcuy AM, Varnell ED, et al. HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci. 2005;46(1):241-7. doi: 10.1167/iovs.04-0614
- Wu T, Mitchell B, Carothers T, et al. Molecular analysis of the pediatric ocular surface for fungi. Curr Eye Res. 2003;26(1):33-6. doi: 10.1076/ceyr.26.1.33.14253
- Wang Y, Chen H, Xia T, Huang Y. Characterization of fungal microbiota on normal ocular surface of humans. Clin Microbiol Infect. 2020;26:123.e9-13. doi: 10.1016/j.cmi.2019.05.011
- Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: A PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci. 2007;48(12):5616-23. doi: 10.1167/iovs.07-0588
- Shestopalov VI, Antonopoulos DA, Miller D, et al. Metagenomic analysis of bacterial community at the human conjunctiva. Invest Ophthalmol Vis Sci. 2010;51(13):2409.
- Dong Q, Brulc JM, Iovieno A, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci. 2011;52(8):5408-13. doi: 10.1167/iovs.10-6939
- Zhou Y, Holland MJ, Makalo P, et al. The conjunctival microbiome in health and trachomatous disease: A case control study. Genome Med. 2014;6(11):99. doi: 10.1186/s13073-014-0099-x
- Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect. 2016;22(7):643.e7-12. doi: 10.1016/j.cmi.2016.04.008
- Li Z, Gong Y, Chen S, et al. Comparative portrayal of ocular surface microbe with and without dry eye. J Microbiol. 2019;57(11):1025-32. doi: 10.1007/s12275-019-9127-2
- Ozkan J, Nielsen S, Diez-Vives C, et al. Temporal stability and composition of the ocular surface microbiome. Sci Rep. 2017;7(1):9880. doi: 10.1038/s41598-017-10494-9
- Isenberg SJ, Apt L, Yoshimori R, Alvarez SR. Source of the conjunctival bacterial flora at birth and implications for ophthalmia neonatorum prophylaxis. Am J Ophthalmol. 1988;106(4):458-62. PMID: 3177565
- Lee PW, Jun AK, Cho BC. A study of microbial flora of conjunctival sac in newborns. Korean J Ophthalmol. 1989;3(1):38-41. PMID: 2795940
- Wen X, Miao L, Deng Y, et al. The influence of age and sex on ocular surface microbiota in healthy adults. Invest Ophthalmol Vis Sci. 2017;58(14):6030-7. doi: 10.1167/iovs.17-22957
- Shin H, Price K, Albert L, et al. Changes in the eye microbiota associated with contact lens wearing. mBio. 2016;7(2):e00198. doi: 10.1128/mBio.00198-16
- Dave SB, Toma HS, Kim SJ. Changes in ocular flora in eyes exposed to ophthalmic antibiotics. Ophthalmology. 2013;120(5):937-41. doi: 10.1016/j.ophtha.2012.11.005
- Zysset-Burri DC, Morandi S, Herzog EL, et al. The role of the gut microbiome in eye diseases. Prog Retin Eye Res. 2023;92:101117. doi: 10.1016/j.preteyeres.2022.101117
- Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101(44):15718-23. doi: 10.1073/pnas.0407076101
- Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes. 2018;67(9):1867-79. doi: 10.2337/db18-0158
- Adams MK, Simpson JA, Aung KZ, et al. Abdominal obesity and age-related macular degeneration. Am J Epidemiol. 2011;173(11):1246-55. doi: 10.1093/aje/kwr005
- Rowan S, Jiang S, Korem T, et al. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci USA. 2017;114(22):E4472-81. doi: 10.1073/pnas.1702302114
- Lin P. The role of the intestinal microbiome in ocular inflammatory disease. Curr Opin Ophthalmol. 2018;29(3):261-6. doi: 10.1097/ICU.0000000000000465
- Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017;7:40826. doi: 10.1038/srep40826
- Abdulaal MR, Abiad BH, Hamam RN. Uveitis in the aging eye: Incidence, patterns, and differential diagnosis. J Ophthalmol. 2015;2015:509456. doi: 10.1155/2015/509456
- Kalyana Chakravarthy S, Jayasudha R, Sai Prashanthi G, et al. Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol. 2018;58(4):457-69. doi: 10.1007/s12088-018-0746-9
- Chaiwiang N, Poyomtip T. Microbial dysbiosis and microbiota-gut-retina axis: The lesson from brain neurodegenerative diseases to primary open-angle glaucoma pathogenesis of autoimmunity. Acta Microbiol Immunol Hung. 2019;66(4):541-58. doi: 10.1556/030.66.2019.038
- Gong H, Zhang S, Li Q, et al. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp Eye Res. 2020;191:107921. doi: 10.1016/j.exer.2020.107921
- Ezzati Amini E, Moradi Y. Association between helicobacter pylori infection and primary open-angle glaucoma: A systematic review and meta-analysis. BMC Ophthalmol. 2023;23(1):374. doi: 10.1186/s12886-023-03111-z
- Izzotti A, Saccà SC, Bagnis A, Recupero SM. Glaucoma and Helicobacter pylori infection: Correlations and controversies. Br J Ophthalmol. 2009;93(11):1420-7. doi: 10.1136/bjo.2008.150409
- Moon J, Choi SH, Yoon CH, Kim MK. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS One. 2020;15(2):e0229029. doi: 10.1371/journal.pone.0229029
- Willis KA, Postnikoff CK, Freeman A, et al. The closed eye harbours a unique microbiome in dry eye disease. Sci Rep. 2020;10(1):12035. doi: 10.1038/s41598-020-68952-w
- Layús BI, Gomez MA, Cazorla SI, Rodriguez AV. Drops of Lactiplantibacillus plantarum CRL 759 culture supernatant attenuates eyes inflammation induced by lipopolysaccharide. Benef Microbes. 2021;12(2):163-74. doi: 10.3920/BM2020.0101
- Dusek O, Fajstova A, Klimova A, et al. Severity of experimental autoimmune uveitis is reduced by pretreatment with live probiotic Escherichia coli Nissle 1917. Cells. 2020;10(1):23. doi: 10.3390/cells10010023
- Filippelli M, dell’Omo R, Amoruso A, et al. Effectiveness of oral probiotics supplementation in the treatment of adult small chalazion. Int J Ophthalmol. 2022;15(1):40-4. doi: 10.18240/ijo.2022.01.06
- Yun SW , Son YH , Lee DY , et al. Lactobacillus plantarum and Bifidobacterium bifidum alleviate dry eye in mice with exorbital lacrimal gland excision by modulating gut inflammation and microbiota Food Funct. 2021;12(6):2489-97. doi: 10.1039/d0fo02984j. Erratum in: Food Funct. 2024;15(2):1051. doi: 10.1039/d3fo90112b
- Vivero-Lopez M, Pereira-da-Mota AF, Carracedo G, et al. Phosphorylcholine-based contact lenses for sustained release of resveratrol: Design, antioxidant and antimicrobial performances, and in vivo behavior. ACS Appl Mater Interfaces. 2022;14(50):55431-46. doi: 10.1021/acsami.2c18217
- Huang G, Su L, Zhang N, et al. The prebiotic and anti-fatigue effects of hyaluronan. Front Nutr. 2022;9:977556. doi: 10.3389/fnut.2022.977556
- Askari G, Moravejolahkami AR. Synbiotic supplementation may relieve anterior uveitis, an ocular manifestation in Behcet’s syndrome. Am J Case Rep. 2019;20:548-50. doi: 10.12659/AJCR.912023
- Erdem B, Kaya Y, Kıran TR, et al. An association between the intestinal permeability biomarker zonulin and the development of diabetic retinopathy in type II diabetes mellitus. Turk J Ophthalmol. 2023;53(2):91-6. doi: 10.4274/tjo.galenos.2022.70375
- Gunardi TH, Susantono DP, Victor AA, Sitompul R. Atopobiosis and dysbiosis in ocular diseases: Is fecal microbiota transplant and probiotics a promising solution? J Ophthalmic Vis Res. 2021;16(4):631-43. doi: 10.18502/jovr.v16i4.9754
- De Paiva CS, Jones DB, Stern ME, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep. 2016;6:23561. doi: 10.1038/srep23561
- Wang C, Zaheer M, Bian F, et al. Sjögren-like lacrimal keratoconjunctivitis in germ-free mice. Int J Mol Sci. 2018;19(2):565. doi: 10.3390/ijms19020565
- Watane A, Cavuoto KM, Rojas M, et al. Fecal microbial transplant in individuals with immune-mediated dry eye. Am J Ophthalmol. 2022;233:90-100. doi: 10.1016/j.ajo.2021.06.022
- Jayasudha R, Kalyana Chakravarthy S, Sai Prashanthi G, et al. Implicating dysbiosis of the gut fungal microbiome in uveitis, an inflammatory disease of the eye. Invest Ophthalmol Vis Sci. 2019;60(5):1384-93. doi: 10.1167/iovs.18-26426
- Nakamura YK, Metea C, Karstens L, et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest Ophthalmol Vis Sci. 2016;57(8):3747-58. doi: 10.1167/iovs.16-19733
