Trace elements and metalloenzymes in patients with acute pancreatitis

Cover Page

Cite item

Full Text

Abstract

For many decades, acute pancreatitis has occupied third place in the structure of emergency surgical abdominal conditions, second to acute calculous cholecystitis and acute appendicitis. Simultaneously, acute pancreatitis ranks first in mortality among other acute surgical conditions. Often acute pancreatitis occurs under the “mask” of gastroenterological problems.

Complex electrolyte and trace element disorders are often formed in the early stages of developing pancreatitis. The concepts of diagnosis and therapeutic and surgical treatment of acute pancreatitis are formulated and reflected in numerous domestic and international monographs and recommendations, which emphasize the important role of water-electrolyte disorders, microbiota, systemic inflammatory response, and cytokine storm as etiological factors in inflammatory development and maintenance and destructive pancreatic and parapancreatic cellular processes. Sepsis, septic shock, and multiple organ failure are the leading causes of mortality in patients with infected pancreatic necrosis.

Problems of the interrelation and role of individual trace elements and metalloenzymes as etiological factors in acute pancreatitis formation, prognostic biochemical markers of the severity of patients’ condition, and prognostic criteria of mortality and recovery are actively studied.

About the authors

Vladimir G. Kotchergin

The Russian National Research Medical University named after N.I. Pirogov; Moscow Clinical Scientific Center

Author for correspondence.
Email: asqwerty1@yandex.ru
ORCID iD: 0000-0002-4995-1048
SPIN-code: 8520-0376

MD

Russian Federation, Moscow; 86, Shosse Entuziastov, Moscow, 111123

Sergey V. Sviridov

The Russian National Research Medical University named after N.I. Pirogov

Email: sergey.sviridov.59@mail.ru
ORCID iD: 0000-0002-9976-8903
SPIN-code: 4974-9195

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Valerii V. Subbotin

Moscow Clinical Scientific Center

Email: asfold@mail.ru
ORCID iD: 0000-0002-0921-7199
SPIN-code: 4089-9559

MD, Dr. Sci. (Med.)

Russian Federation, 86, Shosse Entuziastov, Moscow, 111123

Maria S. Vetsheva

The First Sechenov Moscow State Medical University (Sechenov University)

Email: vetsheva_m_s@staff.sechenov.ru
ORCID iD: 0000-0002-2180-6324
SPIN-code: 5901-8956

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Peery A.F., Dellon E.S., Lund J., et al. Burden of gastrointestinal disease in the United States: 2012 update // Gastroenterology. 2012. Vol. 143, N 5. Р. 1179–1187.e3. doi: 10.1053/j.gastro.2012.08.002
  2. Heckler M., Hackert T., Hu K., et al. Severe acute pancreatitis: surgical indications and treatment // Langenbecks Arch Surg. 2021. Vol. 406, N 3. Р. 521–535. doi: 10.1007/s00423-020-01944-6
  3. Sinonquel P., Laleman W., Wilmer A. Advances in acute pancreatitis // Curr Opin Crit Care. 2021. Vol. 27, N 2. Р. 193–200. doi: 10.1097/MCC.0000000000000806
  4. Petrov M.S., Yadav D. Global epidemiology and holistic prevention of pancreatitis // Nat Rev Gastroenterol Hepatol. 2019. Vol. 16, N 3. Р. 175–184. doi: 10.1038/s41575-018-0087-5
  5. Li C.L., Jiang M., Pan CQ., et al. The global, regional, and national burden of acute pancreatitis in 204 countries and territories // BMC Gastroenterology. 2021. Vol. 21, N 1. Р. 332. doi: 10.1186/s12876-021-01906-2
  6. Агапов К.В. Диагностика и лечение панкреонекроза. Экономическое обоснование рациональной хирургической тактики: Автореф. дис. … д-ра мед. наук. Москва, 2012. 53 p.
  7. Fagenholz P.J., del Castillo C.F., Harris NS., et al. Direct medical costs of acute pancreatitis hospitalizations in the United States // Pancreas. 2007. Vol. 35, N 4. Р. 302–307. doi: 10.1097/MPA.0b013e3180cac24b
  8. Gryshchenko O., Gerasimenko J.V., Peng S., et al. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology // J Physiol. 2018. Vol. 596, N 14. Р. 2663–2678. doi: 10.1113/JP275395
  9. Yadav D., Lowenfels A.B. The epidemiology of pancreatitis and pancreatic cancer // Gastroenterology. 2013. Vol. 144, N 6. Р. 1252–1261. doi: 10.1053/j.gastro.2013.01.068
  10. Pallagi P., Madácsy T., Varga Á., Maléth J. Intracellular Ca2+ signalling in the pathogenesis of acute pancreatitis: recent advances and translational perspectives // Int J Mol Sci. 2020. Vol. 21, N 11. Р. 4005. doi: 10.3390/ijms21114005
  11. Бушмина О.Н., Долгарева С.А., Быстрова Н.А., Локтионова А.В. Функционально-метаболическая активность полиморфноядерных лейкоцитов периферической крови при экспериментальном остром панкреатите на фоне алкогольной интоксикации // Современные проблемы науки и образования. 2017. № 1. С. 30.
  12. Gardner J.D., Calkins B.J., Garrison G.E. ECG diagnosis: The effect of ionized serum calcium levels on electrocardiogram // Perm J. 2014. Vol. 18, N 1. Р. 119–120. doi: 10.7812/TPP/13-025
  13. Будзинский С.А., Шаповальянц С.Г., Федоров Е.Д., Шабрин А.В. Эндоскопическое транспапиллярное панкреатическое стентирование в лечении свищей поджелудочной железы // Хирургия. 2017. № 2. Р. 32–44. doi: 10.17116/hirurgia2017232-44
  14. Otsuki M., Takeda K., Matsuno S. Criteria for the diagnosis and severity stratification of acute pancreatitis // World J Gastroenterol. 2013. Vol. 19, N 35. Р. 5798–5805. doi: 10.3748/wjg.v19.i35.5798
  15. Raraty G.T., Connor S., Criddle D.N., et al. Acute pancreatitis and organ failure: pathophysiology, natural history, and management strategies // Curr Gastroenterol Rep. 2004. Vol. 6, N 2. Р. 99–103. doi: 10.1007/s11894-004-0035-0
  16. Van Dijk S.M., Hallensleben N.D., van Santvoort H.C., et al. Acute pancreatitis: recent advances through randomised trials // Gut. 2017. Vol. 66, N 11, Р. 2024–2032. doi: 10.1136/gutjnl-2016-313595
  17. Gomatos I.P., Halloran C.M., Ghaneh P., et al. Outcomes from minimal access retroperitoneal and open pancreatic necrosectomy in 394 patients with necrotizing pancreatitis // Ann Surg. 2016. Vol. 263, N 5, Р. 992–1001. doi: 10.1097/SLA.0000000000001407
  18. Connor S., Alexakis N., Neal T. Fungal infection but not type of bacterial infection is associated with a high mortality in primary and secondary infected pancreatic necrosis // Dig Surg. 2004. Vol. 21, N 4. Р. 297–304. doi: 10.1159/000080884
  19. Werge M., Novovic S., Schmidt P.N., Gluud L.L. Infection increases mortality in necrotizing pancreatitis: a systematic review and meta-analysis // Pancreatology. 2016. Vol. 16, N 5. Р. 698–707. doi: 10.1016/j.pan.2016.07.004
  20. Мерзликин Н.В., Бражникова Н.А., Цхай В.Ф., и др. Панкреатит. Москва: ГЭОТАР-Медиа, 2014. 528 с.
  21. Калиев А.А. Анализ летальных исходов больных с деструктивными формами острого панкреатита // Современные проблемы науки и образования. 2013. N 5. С. 308.
  22. Шабунин А.В. Панкреонекроз. Диагностика и лечение, Москва: ГЭОТАР-Медиа, 2014. 96 с.
  23. Lee J.W. Fluid and electrolyte disturbances in critically ill patients // Electrolyte Blood Press. 2010. Vol. 8, N 2. Р. 72–81. doi: 10.5049/EBP.2010.8.2.72-81.
  24. Kumar A.H., Griwan M.S. A comparison of APACHE II, BISAP, Ranson’s score and modified CTSI in predicting the severity of acute pancreatitis based on the 2012 revised Atlanta classification // Gastroenterol Rep (Oxf). 2018. Vol. 2, N 6. Р. 127–131. doi: 10.1093/gastro/gox029
  25. Gomatos I.P., Xiaodong X., Ghaneh P., et al. Prognostic markers in acute pancreatitis // Expert Rev Mol Diagn. 2014. Vol. 3, N 14. Р. 333–346. doi: 10.1586/14737159.2014.897608
  26. World Health Organization. Trace elements in human nutrition and health. WHO; 1996. Режим доступа: https://apps.who.int/iris/handle/10665/37931. Дата обращения: 15.02.2021.
  27. Mehri A. Trace Elements in Human Nutrition (II) — An Update // Int J Prev Med. 2020. N 11. Р. 2. doi: 10.4103/ijpvm.IJPVM_48_19
  28. Локтионов А.Л., Конопля А.И., Евсегнеева И.В. Острый панкреатит как клинико-иммунологическая проблема // Физиология и патология иммунной системы. Иммунофармакогенетика. 2013. Т. 17, № 11. C. 3–8.
  29. Chan W.Y., Rennert O.M. The role of copper in iron metabolism // Ann Clin Lab Sci. 1980. Vol. 10, N 4. Р. 338–344.
  30. Danks D.M. Copper deficiency in humans // Annu Rev Nutr. 1988. N 8, Р. 235–257. doi: 10.1146/annurev.nu.08.070188.001315
  31. Sandstead H.H. Copper bioavailability and requirements // Am J Clin Nutr. 1982. Vol. 35, N 4. Р. 809–814. doi: 10.1093/ajcn/35.4.809
  32. Turnlund J.R. Copper nutriture, bioavailability, and the influence of dietary factors // J Am Diet Assoc. 1988.Vol. 3, N 88. Р. 303–308.
  33. Johnson M.A., Kays S. Copper: Its role in human nutrition // Nutr Today. 1990. Vol. 25, N 1. Р. 6–14.
  34. Хубутия М.Ш. Парентеральное и энтеральное питание. Москва: ГЭОТАР-Медиа, 2014. 800 с.
  35. Mercer J.F. The molecular basis of copper-transport diseases // Trends Mol Med. 2001.Vol. 2, N 7. Р. 64–69. doi: 10.1016/s1471-4914(01)01920-7
  36. Aliasgharpour M. A review on copper, ceruloplasmin and Wilson’s disease // Int J Med Invest. 2015. Vol. 4, N 4. Р. 344–347.
  37. Сальникова Е.В. Цинк ― эссенциальный микроэлемент // Вестник Оренбургского государственного университета. 2012. N 10. Р. 170–172.
  38. Zalewski P.D., Forbes I.J., Giannakis C. Physiological role for zinc in prevention of apoptosis (gene-directed death) // Biochem Int. 1991. Vol. 24, N 6. Р. 1093–1101.
  39. Franklin R.B., Costello L.C. Zinc as an anti-tumor agent in prostate cancer and in other cancers // Arch Biochem Biophys. 2007. Vol. 463, N 2. Р. 211–217. doi: 10.1016/j.abb.2007.02.033
  40. Das R., Das M. Need of education and awareness towards zinc supplementation: A review // Int J Nutr Metab. 2012. Vol. 4, N 3. Р. 45–50.
  41. Lönnerdal B. Dietary factors influencing zinc absorption // J Nutr. 2000. Vol. 130, N 5 Suppl. Р. 1378–1383. doi: 10.1093/jn/130.5.1378S
  42. Tuormaa T.E. Adverse effects of zinc deficiency: A review from the literature // J Orthomol Med. 1995. Vol. 10, N 2. Р. 149–164.
  43. Küry S., Dréno B., Bézieau S., et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica // Nat Genet. 2002. Vol. 31, N 3. Р. 239–240. doi: 10.1038/ng913
  44. Kilic M., Taskesen M., Coskun T., et al. A Zinc sulphate-resistant acrodermatitis enteropathica patient with a novel mutation in SLC39A4 gene // JIMD Rep. 2012. N 2. Р. 25–28. doi: 10.1007/8904_2011_38
  45. Maverakis E., Fung M.A., Lynch P.J., et al. Acrodermatitis enteropathica and an overview of zinc metabolism // J Am Acad Dermatol. 2007. Vol. 56, N 1. Р. 116–124. doi: 10.1016/j.jaad.2006.08.015
  46. Perafán-Riveros C., França L.F., Alves A.C., Sanches J.A. Acrodermatitis enteropathica: case report and review of the literature // Pediatr Dermatol. 2002. Vol. 19, N 5. Р. 426–431. doi: 10.1046/j.1525-1470.2002.00200.x
  47. Turnlund J.R., Durkin N., Costa F., Margen S. Stable isotope studies of zinc absorption and retention in young and elderly men // J Nutr. 1986. Vol. 116, N 7. Р. 1239–1247. doi: 10.1093/jn/116.7.1239
  48. Yadrick M.K., Kenney M.A., Winterfeldt E.A. Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females // Am J Clin Nutr. 1989. Vol. 49, N 1. Р. 145−150. doi: 10.1093/ajcn/49.1.145
  49. Rotruck J.T., Pope A.L., Ganther H.E., et al. Selenium: biochemical role as a component of glutathione peroxidase // Science. 1973. Vol. 179, N 4073. Р. 588–590. doi: 10.1126/science.179.4073.588
  50. Gladyshev V.N., Martin Romero F.J., Ming X.X., et al. Molecular biology of selenium and its role in cancer, AIDS and other human diseases // Recent Research Developments in Biochemistry. 1999. Vol. 1. Р. 145–167.
  51. Skalnaya M.G., Skalny A.V. Essential trace elements in human health: a physician’s view. Tomsk: Publishing House of Tomsk State University, 2018. 224 р.
  52. Misra S., Kwong R.W., Niyogi S. Transport of selenium across the plasma membrane of primary hepatocytes and enterocytes of rainbow trout // J Exp Biol. 2012. Vol. 215, Pt 9. Р. 1491–1501. doi: 10.1242/jeb.062307
  53. Combs G.F. Biomarkers of selenium status // Nutrients. 2015. Vol. 4, N 7. Р. 2209–2236. doi: 10.3390/nu7042209
  54. Hatfield D.L., Tsuji P.A., Carlson B.A., Gladyshev V.N. Selenium and selenocysteine: roles in cancer, health, and development // Trends Biochem Sci. 2014. Vol. 3, N 39, Р. 112–120. doi: 10.1016/j.tibs.2013.12.007
  55. Yang W., Diamond A.M. Selenium-binding protein 1 as a tumor suppressor and a prognostic indicator of clinical outcome // Biomark Res. 2013. Vol. 1, N 1. Р. 15. doi: 10.1186/2050-7771-1-15
  56. Verma S., Hoffmann F.W., Kumar M., et al. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses // J Immunol. 2011. Vol. 186, N 4. Р. 2127–2137. doi: 10.4049/jimmunol.1002878
  57. Bellinger F.P., Raman A.V., Reeves M.A., Berry M.J. Regulation and function of selenoproteins in human disease // Biochem J. 2009. Vol. 422, N 1. Р. 11–22. doi: 10.1042/BJ20090219
  58. Huang Z., Rose A.H., Hoffmann P.R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities // Antioxid Redox Signal. 2012. Vol. 16, N 7. Р. 705–743. doi: 10.1089/ars.2011.4145
  59. McCord J.M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) // J Biol Chem. 1969. Vol. 244, N 22. Р. 6049–6055.
  60. Marklund S.L. Human copper-containing superoxide dismutase of high molecular weight // Proc Natl Acad Sci. 1982. Vol. 79, N 24, Р. 7634–7638. doi: 10.1073/pnas.79.24.7634
  61. Rükgauer M., Neugebauer R.J., Plecko T. The relation between selenium, zinc and copper concentration and the trace element dependent antioxidative status // J Trace Elem Med Biol. 2001. N 15, Р. 73–78. doi: 10.1016/S0946-672X(01)80046-8
  62. Bannister J.V., Bannister W.H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase // CRC Crit Rev Biochem. 1987. Vol. 22, N 2. Р. 111–180. doi: 10.3109/10409238709083738
  63. Shahedi K., Pandol S.J., Hu R. Oxidative stress and alcoholic pancreatitis // J Gastroenterol Hepatol Res. 2013. Vol. 2, N 1. Р. 335–342.
  64. Milnerowicz H., Ściskalska M., Dul M. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke // J Trace Elem Med Biol. 2015. N 29. Р. 1–10. doi: 10.1016/j.jtemb.2014.04.008
  65. Coyle P., Philcox J.C., Carey L.C., Rofe A.M. Metallothionein: the multipurpose protein // Cell Mol Life Sci. 2002. Vol. 59, N 4. Р. 627–647. doi: 10.1007/s00018-002-8454-2
  66. Manna S.K., Zhang H.J., Yan T. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1 // J Biol Chem. 1998. Vol. 273, N 21. Р. 13245–13254. doi: 10.1074/jbc.273.21.13245
  67. Andrews G.K. Regulation of metallothionein gene expression by oxidative stress and metal ions // Biochem Pharmacol. 2000. Vol. 59, N 1. Р. 95–105. doi: 10.1016/s0006-2952(99)00301-9
  68. Lynes M.A., Zaffuto K., Unfricht D.W. The physiological roles of extracellular metallothionein // Exp Biol Med. 2006. Vol. 231, N 9. Р. 1548–1554. doi: 10.1177/153537020623100915
  69. Milnerowicz H., Jabłonowska M., Bizoń A. Change of zinc, copper, and metallothionein concentrations and the copper-zinc superoxide dismutase activity in patients with pancreatitis // Pancreas. 2009. Vol. 38, N 6. Р. 681–688. doi: 10.1097/MPA.0b013e3181a53d1
  70. Dalton T., Fu K., Palmiter R.D., Andrews G.K. Тransgenic mice that overexpress metallothionein-I resist dietary zinc deficiency // J Nutr. 1996. Vol. 126, N 4. Р. 825–833. doi: 10.1093/jn/126.4.825
  71. Czakó L., Takács T., Varga I.S., et al. Oxidative stress in distant organs and the effects of allopurinol during experimental acute pancreatitis // Int J Pancreatol. 2000. Vol. 27, N 3. Р. 209–216. doi: 10.1385/IJGC:27:3:209
  72. Milnerowicz H., Bukowski R., Jabłonowska M. The antioxidant profiles, lysosomal and membrane enzymes activity in patients with acute pancreatitis // Mediators Inflamm. 2014. Vol. 2014. Р. 376518. doi: 10.1155/2014/376518
  73. Luthen R., Grendell J.H., Niederau C., Häussinger D. Trypsinogen activation and glutathione content are linked to pancreatic injury in models of biliary acute pancreatitis // Int J Pancreatol. 1998. Vol. 24, N 3. Р. 193–202. doi: 10.1007/BF02788422
  74. Hausmann D.H., Porstmann T., Weber I., et al. Cu/Zn-SOD in human pancreatic tissue and pancreatic juice // Int J Pancreatol. 1997. Vol. 22, N 3. Р. 207–213. doi: 10.1007/BF02788386
  75. Galloway P., McMillan D.C., Sattar N. Effect of the inflammatory response on trace element and vitamin status // Ann Clin Biochem. 2000. Vol. 37, Pt 3. Р. 289–297. doi: 10.1258/0004563001899429
  76. Pinzone M.R., Celesia B.M., Di Rosa M. Microbial translocation in chronic liver diseases // Int J Microbiol. 2012. Vol. 2012. Р. 694629. doi: 10.1155/2012/694629
  77. Li Q., Zhang Q., Wang C., et al. Disruption of tight junctions during polymicrobial sepsis in vivo // J Pathol. 2009. Vol. 218, N 2. Р. 210–221. doi: 10.1002/path.2525
  78. Jha R.K., Yong M.Q., Chen S.H. The protective effect of resveratrol on the intestinal mucosal barrier in rats with severe acute pancreatitis // Med Sci Monit. 2009. Vol. 14, N 1. Р. BR14–19.
  79. Gencay C., Kilicoglu S.S., Kismet K. Effect of honey on bacterial translocation and intestinal morphology in obstructive jaundice // World J Gastroenterol. 2008. Vol. 14, N 21. Р. 3410–3515. doi: 10.3748/wjg.14.3410
  80. Chin K.F., Kallam R., O’Boyle C., MacFie J. Bacterial translocation may influence long-term survival in colorectal cancer patients // Dis Colon Rectum. 2006. Vol. 50, N 3. Р. 323–330. doi: 10.1007/s10350-006-0827-4
  81. MacFie J., Reddy B.S., Gatt M. Bacterial translocation studied in 927 patients over 13 years // Br J Surg. 2006. Vol. 93, N 1. Р. 87–93. doi: 10.1002/bjs.5184
  82. Morrison C.P., Teague B.D., Court F.G., et al. Experimental studies of serum cytokine concentration following pancreatic electrolytic ablation // Med Sci Monit. 2003. Vol. 9, N 1. Р. 43–46.
  83. Noor M.T., Radhakrishna Y., Kochhar R. Bacteriology of infection in severe acute pancreatitis // JOP. 2011. Vol. 12, N 1. Р. 19–25.
  84. Quilliot D., Dousset B., Guerci B., et al. Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis // Pancreas. 2001. Vol. 22, N 3. Р. 299–306. doi: 10.1097/00006676-200104000-00012
  85. Akdas S., Turan B., Durak A. The relationship between metabolic syndrome development and tissue trace elements status and inflammatory markers // Biol Trace Elem Res. 2020. Vol. 198, N 1. Р. 16–24. doi: 10.1007/s12011-020-02046-6
  86. Prasad A.S. Impact of the discovery of human zinc deficiency on health // J Trace Elements Med Biol. 2014. Vol. 28, N 4. Р. 357–363. doi: 10.1016/j.jtemb.2014.09.002
  87. Soussi A., Gargouri M., El Feki A. Effects of co-exposure to lead and zinc on redox status, kidney variables, and histopathology in adult albino rats // Toxicol Ind Health. 2018. Vol. 34, N 7. Р. 469–480. doi: 10.1177/0748233718770293
  88. Zhong W., Li Q., Sun Q. Preventing gut Leakiness and endotoxemia contributes to the protective effect of zinc on alcohol induced steatohepatitis in rats // J Nutr. 2015. Vol. 145, N 12. Р. 2690–2698. doi: 10.3945/jn.115.216093
  89. Wessels I., Cousins R.J. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation // Am J Physiol Gastrointest Liver Physiol. 2015. Vol. 309, N 9. Р. 768–778. doi: 10.1152/ajpgi.00179.2015
  90. Vujasinovic M., Hedström A., Maisonneuve P., et al. Zinc deficiency in patients with chronic pancreatitis // World J Gastroenterol. 2019. Vol. 25, N 5. Р. 600–607. doi: 10.3748/wjg.v25.i5.600
  91. Russo A.J. Analysis of plasma zinc and copper concentration, and perceived symptoms, in individuals with depression, post zinc and anti-oxidant therapy // Nutrition Metab Insights. 2011. N 4. Р. 19–27. doi: 10.4137/NMI.S6760
  92. Kuklinski B., Buchner M., Müller T., Schweder R. Anti-oxidant therapy of pancreatitis: an 18 month interim evaluation (In German) // Z Gesamte Inn Med. 1992. Vol. 47, N 6. Р. 239–245.
  93. Kuklinski B., Zimmermann T., Schweder R. Decreasing mortality in acute pancreatitis with sodium selenite. Clinical results of 4 years antioxidant therapy (In German) // Med Klin. 1995. N 90, Suppl 1. Р. 136–141.
  94. Angstwurm M.W., Schottdorf J., Schopohl J., Gaertner R. Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome // Crit Care Med. 1999. Vol. 27, N 9. Р. 1807–1813. doi: 10.1097/00003246-199909000-00017
  95. Esrefoglu M. Experimental and clinical evidence of antioxidant therapy in acute pancreatitis // World J Gastroenterol. 2012. Vol. 18, N 39. Р. 5533–5541. doi: 10.3748/wjg.v18.i39.5533
  96. Fabris C., Farini R., del Favero G., et al. Copper, zinc and copper/zinc ratio in chronic pancreatitis and pancreatic cancer // Clin Biochem. 1985. Vol. 18, N 6. Р. 373–375. doi: 10.1016/s0009-9120(85)80078-3
  97. Kirk G.R., White J.S., McKie L., et al. Combined antioxidant therapy reduces pain and improves quality of life in chronic pancreatitis // J Gastrointest Surg. 2006. Vol. 10, N 4. Р. 499–503. doi: 10.1016/j.gassur.2005.08.035
  98. Bhardwaj P., Garg P.K., Maulik S.K., et al. A randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis // Gastroenterology. 2009. Vol. 136, N 1. Р. 149–159.e2. doi: 10.1053/j.gastro.2008.09.028
  99. Uden S., Schofield D., Miller P.F., et al. Antioxidant therapy for recurrent pancreatitis: biochemical profiles in a placebo-controlled trial // Aliment Pharmacol Ther. 1992. Vol. 6, N 2. Р. 229–240. doi: 10.1111/j.1365-2036.1992.tb00266.x
  100. Powell S.R. The antioxidant properties of zinc // J Nutr. 2000. Vol. 130, N 5S Suppl. Р. 1447–1454. doi: 10.1093/jn/130.5.1447S
  101. Bao S., Liu M.J., Lee B. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB // Am J Physiol Lung Cell Mole Physiol. 2010. Vol. 298, N 6. Р. 744–754. doi: 10.1152/ajplung.00368.2009
  102. Queiroz C.A., Fonseca S.G., Frota P.B. Zinc treatment ameliorates diarrhea and intestinal inflammation in undernourished rats // Bmc Gastroenterology. 2014. N 14. Р. 136. doi: 10.1186/1471-230X-14-136
  103. Cai L., Li X.K., Song Y., Cherian M.G. Essentiality, toxicology and chelation therapy of zinc and copper // Curr Med Chem. 2005. Vol. 23, N 12. Р. 2753–2763. doi: 10.2174/092986705774462950
  104. Saravu K., Jose J., Bhat M.N., Jimmy B. Acute ingestion of copper sulphate: a review on its clinical manifestations and management // IJCCM. 2007. Vol. 11, N 2. Р. 74-80. doi: 10.4103/0972-5229.33389
  105. Kashiwagi M., Akimoto H., Goto J., Aoki T. Analysis of zinc and other elements in rat pancreas, with studies in acute pancreatitis // J Gastroenterol. 1995. Vol. 30, N 1. Р. 84–89. doi: 10.1007/BF01211380
  106. Bowrey D.J., Morris-Stiff G.J., Puntis M.C. Selenium deficiency and chronic pancreatitis: disease mechanism and potential for therapy // HPB Surg. 1999. Vol. 11, N 4. Р. 207–215. doi: 10.1155/1999/97140
  107. Siriwardena A.K., Mason J.M., Balachandra S., et al. Randomised, double blind, placebo controlled trial of intravenous antioxidant (n-acetylcysteine, selenium, vitamin C) therapy in severe acute pancreatitis // Gut. 2007. Vol. 56, N 10. Р. 1439–1444. doi: 10.1136/gut.2006.115873
  108. Ciesielska-Szuster A., Daniluk J., Kandefer-Szerszeń M. Oxidative stress in blood of patients with alcohol-related pancreatitis // Pancreas. 2001. Vol. 22, N 3. Р. 261–266. doi: 10.1097/00006676-200104000-00006
  109. Rayman M.P. The importance of selenium to human health // Lancet. 2000. Vol. 356, N 9225. Р. 233–241. doi: 10.1016/S0140-6736(00)02490-9
  110. Dixit A., Dawra R., Saluja A. Role of trypsinogen activation in genesis of pancreatitis // Pancreapedia: Exocrine Pancreas Knowledge Base, 2016. doi: 10.3998/panc.2016.25
  111. Rahimi R., Nikfar S., Larijani B., Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications // Biomed Pharmacother. 2005. Vol. 59, N 7. Р. 365–373. doi: 10.1016/j.biopha.2005.07.002
  112. Dziurkowska-Marek A., Marek T.A., Nowak A. The dynamics of the oxidant-antioxidant balance in the early phase of human acute biliary pancreatitis // Pancreatology. 2002. Vol. 4, N 3-4. Р. 215–222. doi: 10.1159/000078432
  113. Lerch M.M., Zenker M., Turi S., Mayerle J. Developmental and metabolic disorders on the pancreas // Endocrinol Metab Clin North Am. 2006. Vol. 35, N 2. Р. 219–241. doi: 10.1016/j.ecl.2006.02.004
  114. Rau B., Poch B., Gansauge F., et al. Pathophysiologic role of oxygen free radicals in acute pancreatitis // Ann Surg. 2000. Vol. 231, N 3. Р. 352–360. doi: 10.1097/00000658-200003000-00008
  115. Curran F., Sattar N., Talwar D., et al. Relationship of carotenoid and vitamins A and E with the acute inflammatory response in acute pancreatitis // Br J Surg. 2000. Vol. 87, N 3. Р. 301–305. doi: 10.1046/j.1365-2168.2000.01375.x
  116. Arrigo A.P., Kretz-Remy C. Regulation of mammalian gene expression by free radicals Molecular biology of free radicals in human diseases. London: Oica International London, 1989. Р. 183–223.
  117. Storck L.J., Imoberdorf R., Ballmer P.E. Nutrition in gastrointestinal disease: liver, pancreatic, and inflammatory bowel disease // J Clin Med. 2019. Vol. 8, N 8. Р. 1098–1103. doi: 10.3390/jcm8081098
  118. Mayer J., Rau B., Gansauge F., Beger H.G. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications // Gut. 2000. Vol. 47, N 4. Р. 546–552. doi: 10.1136/gut.47.4.546
  119. Park B.K., Chung J.B., Lee J.H., et al. Role of oxygen free radicals in patients with acute pancreatitis // World J Gastroenterol. 2003. Vol. 9, N 10. Р. 2266–2269. doi: 10.3748/wjg.v9.i10.2266
  120. Kao Y.J., Starnes W.L., Behal F.J. Human kidney alanine // Biochemistry. 1978. Vol. 17, N 15. Р. 2990–2994. doi: 10.1021/bi00608a008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kotchergin V.G., Sviridov S.V., Subbotin V.V., Vetsheva M.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies