Nutritional and metabolic characteristics of Paralympic athletes with spinal cord injury

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Common consequences of spinal cord injury in athletes include reduced basal metabolic rate, loss of muscle mass, impaired thermoregulation, and the development of chronic subclinical inflammation. Evidence-based recommendations for nutritional support in this group of athletes are currently lacking.

AIM: This work aimed to characterize the plasma proteomic and metabolomic profiles of athletes from the Russian national wheelchair basketball team with spinal cord injury in order to develop personalized nutritional support recommendations.

METHODS: Mass spectrometry analysis of blood plasma was performed in nine athletes from the Russian national wheelchair basketball team (mean age 37.9 ± 5.8 years, spinal cord injury at Th3–L1). A total of 61 proteins were identified and 40 endogenous metabolites were quantitatively measured.

RESULTS: Activation of the acute-phase response was revealed (an increase in the levels of ITIH4, SERPINA3, AHSG, and ORM2 proteins by 2.3–9.6-fold), as well as a fivefold increase in apolipoprotein C-III concentration (57.78 ± 30.39 μM). Marked reductions were detected in glucogenic amino acids (alanine, serine, threonine decreased by 84%–96%), urea cycle components (arginine, ornithine decreased by 78%–88%), and Krebs cycle substrates (citrate and lactate decreased by 89%–99%). A sixfold increase in d-hydroxylysine concentration (54.022 ± 13.599 μM) indicates intensive collagen catabolism.

CONCLUSION: Wheelchair basketball players exhibit a specific metabolic phenotype characterized by deficiency of amino acids involved in energy metabolism, dyslipidemia, and activation of inflammatory processes. To correct these alterations, personalized nutritional support is recommended, including increased protein intake to 2.0–2.2 g/kg, additional supplementation with L-citrulline (6–8 g/day), taurine (2–3 g/day), collagen synthesis substrates, and omega-3 polyunsaturated fatty acids (3–4 g/day).

About the authors

Kseniya A. Yurku

Federal Medical Biophysical Center named after A.I. Burnazyan

Author for correspondence.
Email: ks_yurku@mail.ru
ORCID iD: 0000-0002-1973-1693
SPIN-code: 3487-0877

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Guzel Z. Idrisova

Russian Paralympic Committee

Email: guzel_idrisova@mail.ru
ORCID iD: 0000-0001-6219-8268
SPIN-code: 7717-6238

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Kristina A. Malsagova

Research Institute of Biomedical Chemistry named after V.N. Orekhovich

Email: kristina.malsagova86@gmail.ru
ORCID iD: 0000-0001-9404-1660
SPIN-code: 4215-2135

Cand. Sci. (Biology)

Russian Federation, Moscow

Arthur T. Kopylov

Research Institute of Biomedical Chemistry named after V.N. Orekhovich

Email: a.t.kopylov@gmail.com
ORCID iD: 0000-0002-7199-372X

Cand. Sci. (Biology)

Russian Federation, Moscow

Anna L. Kaysheva

Research Institute of Biomedical Chemistry named after V.N. Orekhovich

Email: kaysheva1@gmail.com
ORCID iD: 0000-0003-4472-2016
SPIN-code: 7473-7581

Dr. Sci. (Biology)

Russian Federation, Moscow

Kirill S. Nikolsky

Research Institute of Biomedical Chemistry named after V.N. Orekhovich

Email: kirill.s.nikolsky@yandex.ru
ORCID iD: 0000-0003-3571-513X
SPIN-code: 3670-0382
Russian Federation, Moscow

Alexey N. Tsarev

Federal Medical Biophysical Center named after A.I. Burnazyan

Email: tsarev58@yandex.ru
ORCID iD: 0000-0001-6412-8247
SPIN-code: 1921-8976

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Vasily I. Pustovoit

Federal Medical Biophysical Center named after A.I. Burnazyan

Email: vipust@yandex.ru
ORCID iD: 0000-0003-3396-5813
SPIN-code: 2079-1027

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Granados C, Yanci J, Badiola A, et al. Anthropometry and performance in wheelchair basketball. J Strength Cond Res. 2015;29(7):1812–1820. doi: 10.1519/JSC.0000000000000817
  2. Najafabadi MG, Shariat A, Anastasio AT. Wheelchair basketball, health, competitive analysis, and performance advantage: A review of theory and evidence. J Exerc Rehabil. 2023;19(4):208–218. doi: 10.12965/jer.2346216.108 EDN: XXLPZD
  3. Alrashidi AA, Nightingale TE, Krassioukov AV. Time to reconsider the importance of autonomic function in paralympic athletes with spinal cord injury. JAMA Cardiol. 2021;6(8):976–977. doi: 10.1001/jamacardio.2021.1130 EDN: OYLNNS
  4. Duan R, Qu M, Yuan Y, et al. Clinical benefit of rehabilitation training in spinal cord injury: A systematic review and meta–analysis. Spine. 2021;46(6):E398–E410. doi: 10.1097/BRS.0000000000003789 EDN: XJTJIY
  5. Di Giulio F, Castellini C, Palazzi S, et al. Correlates of metabolic syndrome in people with chronic spinal cord injury. J Endocrinol Invest. 2024;47(8):2097–2105. doi: 10.1007/s40618-023-02298-8 EDN: DZCQII
  6. de Groot S, Adriaansen JJ, Tepper M, et al. Metabolic syndrome in people with a long-standing spinal cord injury: associations with physical activity and capacity. Appl Physiol Nutr Metab. 2016;41(11):1190–1196. doi: 10.1139/apnm-2016-0269
  7. Wahl U, Hirsch T. A systematic review of cardiovascular risk factors in patients with traumatic spinal cord injury. VASA Z Gefasskrankheiten. 2022;51(1):46–55. doi: 10.1024/0301-1526/a000981 EDN: VZPUUO
  8. Farkas GJ, Gordon PS, Trewick N, et al. Comparison of various indices in identifying insulin resistance and diabetes in chronic spinal cord injury. J Clin Med. 2021;10(23):5591. doi: 10.3390/jcm10235591 EDN: PQLPFZ
  9. Parfyonova LA, Shvetsova TV. Features of a technique of training classes in basketball on carriages. Science and sport: current trends. 2016;10(1(10)):73–77. EDN: VPIHWV
  10. Sellami M, Puce L, Bragazzi NL. Immunological response to exercise in athletes with disabilities: A narrative review of the literature. Healthcare. 2023;11(12):1692. doi: 10.3390/healthcare11121692 EDN: CCTFEJ
  11. Tuakli-Wosornu YA, Mashkovskiy E, Ottesen T, et al. Acute and chronic musculoskeletal injury in para sport: A critical review. Phys Med Rehabil Clin N Am. 2018;29(2):205–243. doi: 10.1016/j.pmr.2018.01.014 EDN: XYAYNN
  12. Guest JD, Kelly-Hedrick M, Williamson T, et al. Development of a systems medicine approach to spinal cord injury. J Neurotrauma. 2023;40(17–18):1849–1877. doi: 10.1089/neu.2023.0024 EDN: LOWTFE
  13. Yanci J, Granados C, Otero M, et al. Sprint, agility, strength and endurance capacity in wheelchair basketball players. Biol Sport. 2015;32(1):71–78. doi: 10.5604/20831862.1127285
  14. Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243–259. doi: 10.1093/nutrit/nuy001
  15. Neoh GKS, Tan X, Chen S, et al. Glycogen metabolism and structure: A review. Carbohydr Polym. 2024;346:122631. doi: 10.1016/j.carbpol.2024.122631 EDN: PDERTN
  16. Gonzalez AM, Townsend JR, Pinzone AG, Hoffman JR. Supplementation with nitric oxide precursors for strength performance: A review of the current literature. Nutrients. 2023;15(3):660. doi: 10.3390/nu15030660 EDN: AXGIMM
  17. Kumar R, Coggan AR, Ferreira LF. Nitric oxide and skeletal muscle contractile function. Nitric Oxide Biol Chem. 2022;122–123:54–61. doi: 10.1016/j.niox.2022.04.001 EDN: SMVEDW
  18. Bischof K, Stafilidis S, Bundschuh L, et al. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides – a randomized controlled trial. Front Nutr. 2024;11:1384112. doi: 10.3389/fnut.2024.1384112 EDN: YRXMER
  19. Kusy K, Matysiak J, Kokot ZJ, et al. Exercise-induced response of proteinogenic and non-proteinogenic plasma free amino acids is sport-specific: A comparison of sprint and endurance athletes. PLOS ONE. 2024;19(8):e0309529. doi: 10.1371/journal.pone.0309529 EDN: DUYMFX
  20. Li J, Liu S, Wang S, et al. Effects of nutritional supplements on endurance performance and subjective perception in athletes exercising in the heat: A systematic review and network meta-analysis. Nutrients. 2025;17(13):2141. doi: 10.3390/nu17132141
  21. Kusy K, Ciekot-Sołtysiak M, Matysiak J, et al. Changes in plasma free amino acid profile in endurance athletes over a 9-month training cycle. Metabolites. 2024;14(7):353. doi: 10.3390/metabo14070353 EDN: OAQHVU

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).