Assessment of body composition parameters in patients with osteoporosis

Cover Page

Cite item

Full Text

Abstract

Increased life expectancy leads to increased prevalence of osteoporosis. When assessing body composition parameters in patients with osteoporosis, it is necessary to take into account a possible decrease in height in this group as the most frequent complication of osteoporosis against the background of vertebral compression fractures. The authors compare different methods for assessing body composition in patients with osteoporosis, because skeletal deformities and reduced height make the interpretation of body composition parameters difficult.

Reduced patient height may result in overestimation of calculated measures of nutritional status using height squared in the denominator (e.g. BMI), reducing the sensitivity of these methods in assessing nutritional status. Body length measurement or anamnestic height estimation may be considered in these patients, but further research on this topic is needed.

The use of densitometry or bioimpedance analysis is optimal as instrumental methods to determine body composition. Assessment of the phase angle in these patients may have additional advantages as this parameter is independent of the accuracy of anthropometric measurements. If densitometry and bioimpedance analysis are not available in these patients, indirect assessment of musculoskeletal content may have additional advantages, as this parameter is independent of the accuracy of anthropometric measurements. assessment of the musculoskeletal content of the body can be carried out by measuring the circumference of the muscles of the upper arm and lower leg of the upper arm and lower leg muscles. Densitometry or bioimpedance analysis are preferred. In addition, assessing the phase angle in such patients may have additional benefits because it is independent of the accuracy of anthropometric measurements.

About the authors

Anastasiya S. Podkhvatilina

The Russian National Research Medical University named after N.I. Pirogov; National Medical Research Centre «Treatment and Rehabilitation Centre»

Author for correspondence.
Email: nansy.rezerpin@gmail.com
ORCID iD: 0000-0001-5050-6390
SPIN-code: 2818-8561
Russian Federation, Moscow; Moscow

Igor G. Nikitin

The Russian National Research Medical University named after N.I. Pirogov

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Svetlana P. Shchelykalina

The Russian National Research Medical University named after N.I. Pirogov

Email: svetlanath@gmail.com
ORCID iD: 0000-0003-3292-8949
SPIN-code: 9804-0820

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Moscow

References

  1. Khandelwal S, Lane NE. Osteoporosis: Review of Etiology, Mechanisms, and Approach to Management in the Aging Population. Endocrinology and Metabolism Clinics. 2023;52(2):259–275. doi: 10.1016/j.ecl.2022.10.009
  2. Humphrey MB, Zahedi B, Warriner A, et al. Osteoporosis: Epidemiology and Assessment. In: A Clinician’s Pearls & Myths in Rheumatology. Cham: Springer International Publishing; 2023. P. 579–585. doi: 10.1007/978-3-031-23488-0_40
  3. Mel’nichenko GA, Belaya ZhE, Rozhinskaya LYa, et al. Russian federal clinical guidelines on the diagnostics, treatment, and prevention of osteoporosis. Problems of Endocrinology. 2017;63(6):392–426. EDN: YNULGQ doi: 10.14341/probl2017636392-426
  4. Ershova OB, Belova KYu, Belov MV, Lesnyak OM. Epidemiology of proximal femur fractures in the urban population of the Russian Federation: results of a multicenter study. Materials of the scientific-practical conference “Osteoporosis — the most important multidisciplinary health care problem of the XXI century”. 2012;23: 23–27. (In Russ).
  5. Grebennikova TA, Tsoriev TT, Vorobeva JR, Belaya ZE. Osteosarcopenia: pathogenesis, diagnosis and therapeutic approaches. Annals of the Russian academy of medical sciences. 2020;75(3):240–249. EDN: RBQSYU doi: 10.15690/vramn1243
  6. Ebeling PR, Nguyen HH, Aleksova J, et al. Secondary osteoporosis. Endocrine Reviews. 2022;43(2):240–313. doi: 10.1210/endrev/bnab028
  7. Frisoli A. Clinical and biochemical phenotype of osteosarcopenia. In: WCO-IOF-ESCEO World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Florence: Springer; 2017.
  8. Sirola J, Kröger H. Similarities in acquired factors related to postmenopausal osteoporosis and sarcopenia. Journal of osteoporosis. 2011;2011. doi: 10.4061/2011/536735
  9. Marra M, Sammarco R, De Lorenzo A, et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast Media & Molecular Imaging. 2019;2019. doi: 10.1155/2019/3548284
  10. Martirosov EG, Nikolaev DV, Rudnev SG. Technologies and methods of human body composition assessment. Moscow: Nauka; 2006.
  11. De Laet C, Kanis JA, Odén A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporosis international. 2005;16(11):1330–1338. doi: 10.1007/s00198-005-1863-y
  12. Mokrysheva NG, Krupinova JA, Volodicheva VL, Mirnaya SS, Melnichenko GA. A view at sarcopenia by endocrinologist. Osteoporosis and Bone Diseases. 2019;22(4):19–26. EDN: ITHWZB doi: 10.14341/osteo12465
  13. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169
  14. Tkacheva ON, Tutelyan VA, Shestopalov AE, et al. Nutritional insufficiency (malnutrition) in older adults. Clinical recommendations. Russian Journal of Geriatric Medicine. 2021;(1):15–34. EDN: JTCBGW doi: 10.37586/2686-8636-1-2021-15-34
  15. Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. The Korean journal of internal medicine. 2016;31(4):643–650. doi: 10.3904/kjim.2016.015
  16. Safonova JA, Glazunova GM. Diagnostic Criteria and Prevalence of Sarcopenia in the Elderly. Adv Gerontol. 2019;32(6):882–888.
  17. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. American journal of epidemiology. 1998;147(8):755–763. doi: 10.1093/oxfordjournals.aje.a009520
  18. Delmonico MJ, Harris TB, Lee J-S, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. Journal of the American Geriatrics Society. 2007;55(5):769–774. doi: 10.1111/j.1532-5415.2007.01140.x
  19. Newman AB, Kupelian V, Visser M, et al. Sarcopenia: alternative definitions and associations with lower extremity function. Journal of the American Geriatrics Society. 2003;51(11):1602–1609. doi: 10.1046/j.1532-5415.2003.51534.x
  20. Abdalla PP, da Silva LSL, Venturini ACR, et al. Anthropometric equations to estimate appendicular muscle mass from dual-energy X-ray absorptiometry (DXA): A scoping review. Archives of Gerontology and Geriatrics. 2023:104972. doi: 10.1016/j.archger.2023.104972
  21. Tsoriev TT, Skripnikova IA, Kosmatova OV, Kolchina MA. The difficulties of diagnosing and determining the tactics of treating osteoporosis in severe spinal scoliosis case. Osteoporosis and Bone Diseases. 2023;26(2):28–36. EDN: LMOVQG doi: 10.14341/osteo13132
  22. Jamaludin A, Fairbank J, Harding I, et al. Identifying Scoliosis in Population-Based Cohorts: Automation of a Validated Method Based on Total Body Dual Energy X-ray Absorptiometry Scans. Calcif Tissue Int. 2020;106(4):378–385. doi: 10.1007/s00223-019-00651-9
  23. North American Menopause Society. Management of postmenopausal osteoporosis: position statement of The North American Menopause Society: Retracted. Menopause. 2002;9(2):84–101.
  24. Nikolaev DV, Smirnov AV, Bobrinskaya IG, Rudnev SG. Bioelectric impedance analysis of human body composition. Moscow: Nauka; 2009. EDN: QUUAFX
  25. Gaivoronskiy IV, Nichiporuk GI, Gaivoronskiy IN, Nichiporuk NG. Bioimpedansometry as a method of the component bodystructure assessment (review). Vestnik SPbSU. Medicine. 2017;12(4):365–384. EDN: YNSXGC doi: 10.21638/11701/spbu11.2017.406
  26. Garlini LM, Alves FD, Ceretta LB, et al. Phase angle and mortality: a systematic review. European journal of clinical nutrition. 2019;73(4):495–508. doi: 10.1038/s41430-018-0159-1
  27. Wirth R, Volkert D, Rösler A, Sieber CC, Bauer JM. Bioelectric impedance phase angle is associated with hospital mortality of geriatric patients. Archives of gerontology and geriatrics. 2010;51(3):290–294. doi: 10.1016/j.archger.2009.12.002
  28. Kilic MK, Kizilarslanoglu MC, Arik G, et al. Association of bioelectrical impedance analysis–derived phase angle and sarcopenia in older adults. Nutrition in Clinical Practice. 2017;32(1):103–109. doi: 10.1177/0884533616664503
  29. Uemura K, Yamada M, Okamoto H. Association of bioimpedance phase angle and prospective falls in older adults. Geriatrics & gerontology international. 2019;19(6):503–507. doi: 10.1111/ggi.13651
  30. Uemura K, Doi T, Tsutsumimoto K, et al. Predictivity of bioimpedance phase angle for incident disability in older adults. Journal of cachexia, sarcopenia and muscle. 2020;11(1):46–54. doi: 10.1002/jcsm.12492
  31. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clinical nutrition. 2012;31(6):854–861. doi: 10.1016/j.clnu.2012.05.008
  32. Norman K, Stobäus N, Zocher D, et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. The American journal of clinical nutrition. 2010;92(3):612–619. doi: 10.3945/ajcn.2010.29215
  33. Bering T, Diniz KGD, Coelho MPP, et al. Bioelectrical Impedance Analysis–Derived Measurements in Chronic Hepatitis C: Clinical Relevance of Fat-Free Mass and Phase Angle Evaluation. Nutrition in Clinical Practice. 2018;33(2):238–246. doi: 10.1177/0884533617728487
  34. de Blasio F, Gregorio AD, de Blasio F, et al. Malnutrition and sarcopenia assessment in patients with chronic obstructive pulmonary disease according to international diagnostic criteria, and evaluation of raw BIA variables. Respiratory medicine. 2018;134:1–5. doi: 10.1016/j.rmed.2017.11.006
  35. Pena NF, Mauricio SF, Rodrigues AMS, et al. Association between standardized phase angle, nutrition status, and clinical outcomes in surgical cancer patients. Nutrition in Clinical Practice. 2019;34(3):381–386. doi: 10.1002/ncp.10110
  36. Norman K, Wirth R, Neubauer M, Eckardt R, Stobäus N. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. Journal of the American Medical Directors Association. 2015;16(2):173.e17–173.e22. doi: 10.1016/j.jamda.2014.10.024
  37. De Blasio F, Santaniello MG, de Blasio F, et al. Raw BIA variables are predictors of muscle strength in patients with chronic obstructive pulmonary disease. European Journal of Clinical Nutrition. 2017;71(11):1336–1340. doi: 10.1038/ejcn.2017.147
  38. Di Vincenzo O, Marra M, Scalfi L. Bioelectrical impedance phase angle in sport: A systematic review. Journal of the International Society of Sports Nutrition. 2019;16(1):49. doi: 10.1186/s12970-019-0319-2
  39. Guryeva AB, Maksimovich VA, Alexeeva VA, et al. Ethno-Territorial Features of Somatometric Indicators of Combat Athletes of Belarus and Yakutia. Uchenye zapiski universiteta imeni P.F. Lesgafta. 2023;(3):127–132. EDN: RODYYT doi: 10.34835/issn.2308-1961.2023.03.p127-132
  40. Yamada Y, Buehring B, Krueger D, et al. Electrical properties assessed by bioelectrical impedance spectroscopy as biomarkers of age-related loss of skeletal muscle quantity and quality. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2017;72(9):1180–1186. doi: 10.1093/gerona/glw225
  41. Norman K, Herpich C, Müller-Werdan U. Role of phase angle in older adults with focus on the geriatric syndromes sarcopenia and frailty. Reviews in Endocrine and Metabolic Disorders. 2023;24(3): 429–437. doi: 10.1007/s11154-022-09772-3
  42. Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. European journal of applied physiology. 2002;86:509–516. doi: 10.1007/s00421-001-0570-4
  43. Di Vincenzo O, Marra M, Di Gregorio A, Pasanisi F, Scalfi L. Bioelectrical impedance analysis (BIA)-derived phase angle in sarcopenia: a systematic review. Clinical Nutrition. 2021;40(5): 3052–3061. doi: 10.1016/j.clnu.2020.10.048
  44. Schols AMWJ, Broekhuizen R, Weling-Scheepers CA, Wouters EF. Body composition and mortality in chronic obstructive pulmonary disease. The American journal of clinical nutrition. 2005;82(1):53–59. doi: 10.1093/ajcn.82.1.53
  45. Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. Journal of the American Geriatrics Society. 2008;56(9):1710–1715. doi: 10.1111/j.1532-5415.2008.01854.x
  46. Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. Journal of applied physiology. 2000;89(2):465–471. doi: 10.1152/jappl.2000.89.2.465
  47. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society. 2002;50(5):889–896. doi: 10.1046/j.1532-5415.2002.50216.x
  48. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. American journal of epidemiology. 2004;159(4):413–421. doi: 10.1093/aje/kwh058

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Long-term effects of compression fractures.

Download (640KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies