Nutritional interventions in the framework of a person-centered model of health care and geroprotection

Cover Page

Cite item

Full Text

Abstract

The existing system of prevention of age-related diseases that focused on cohort-based risk factors shows insufficient effectiveness; thus, practicable methodology of health promotion compliant with the principles of P4 medicine, with a special focus on nutritional interventions, is needed. The study outlines an algorithm of nutritional interventions designed in accordance with the principles of person-centered organizational model of healthcare. The algorithm is based on the modern concept of exposome and its influence on the key mechanisms of accelerated aging and pathogenesis of age-related diseases. The proposed approach to personalized nutritional interventions is implemented in three steps: (1) the need for nutritional intervention is identified through the evaluation of the signs and symptoms of health impairment and accelerated aging that have very probable association with suboptimal nutrition, (2) individual exposome factors are evaluated as potential sources of health problems, and (3) first-line nutritional interventions are selected and implemented. The algorithm focused on eliminating the shortcomings of the diagnosis-centered organizational model of healthcare prevailing worldwide: to enable early detection of distress, use of the most effective and affordable interventions (diet and nutrition), and maximum involvement of the patient in health management. The algorithm bears a good potential of automation through decision support for patients regarding health. The use of original questionnaires and patient-centered data reduces the cost and expands the possibilities of scaling the algorithms of intervention. The algorithm can become the basis for the wide introduction of the principles of predictive, personalized, and participatory prevention of age-related diseases.

About the authors

Andrey V. Martyushev-Poklad

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Author for correspondence.
Email: avmp2007@gmail.com
ORCID iD: 0000-0002-1193-1287
SPIN-code: 3505-7526
Scopus Author ID: 8278501900
ResearcherId: AAD-2072-2022

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Dmitry S. Yankevich

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: yanson_d@mail.ru
ORCID iD: 0000-0001-5143-7366
SPIN-code: 6506-8058
Scopus Author ID: 57192693303
ResearcherId: AAG-1392-2020

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Nataliya G. Savitskaya

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: elirom@mail.ru
ORCID iD: 0000-0001-8674-1632
SPIN-code: 1459-6085
Scopus Author ID: 35773664800
ResearcherId: AAH-4702-2021

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Marina V. Petrova

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: mail@petrovamv.ru
ORCID iD: 0000-0003-4272-0957
SPIN-code: 9132-4190
Scopus Author ID: 57191543337
ResearcherId: P-1259-2015

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Order of the Ministry of Health of Russia No. 186 of 24 April 2018 “Ob utverzhdenii Kontseptsii prediktivnoy, preventivnoy i personalizirovannoy meditsiny”. Available from: https://www.garant.ru/products/ipo/prime/doc/71847662/. (In Russ).
  2. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039
  3. López-Otín C, Kroemer G. Hallmarks of Health. Cell. 2021; 184(1):33–63. doi: 10.1016/j.cell.2020.11.034
  4. Kahl KG, Stapel B, Frieling H. Link between depression and cardiovascular diseases due to epigenomics and proteomics: Focus on energy metabolism. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:146–157. doi: 10.1016/j.pnpbp.2018.09.004
  5. Wild CP. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prevention. 2005;14(8):1847–1850. doi: 10.1158/1055-9965.EPI-05-0456
  6. Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24–32. doi: 10.1093/ije/dyr236
  7. Kalia V, Belsky DW, Baccarelli AA, Miller GW. An exposomic framework to uncover environmental drivers of aging. Exposome. 2022;2(1):osac002. doi: 10.1093/exposome/osac002
  8. Poveda A, Pomares-Millan H, Chen Y, et al. Exposome-wide ranking of modifiable risk factors for cardiometabolic disease traits. Sci Rep. 2022;12(1):4088. doi: 10.1038/s41598-022-08050-1
  9. Epel ES. Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones (Athens). 2009;8(1):7–22. doi: 10.14310/horm.2002.1217
  10. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35(1):2–16. doi: 10.1016/j.neubiorev.2009.10.002
  11. Fava GA, McEwen BS, Guidi J, et al. Clinical characterization of allostatic overload. Psychoneuroendocrinology. 2019;108:94–101. doi: 10.1016/j.psyneuen.2019.05.028
  12. Picard M, McEwen BS. Psychological Stress and Mitochondria: A Conceptual Framework. Psychosom Med. 2018;80(2):126–140. doi: 10.1097/PSY.0000000000000544
  13. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl. 1):S4–9. doi: 10.1093/gerona/glu057
  14. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–522. doi: 10.1038/s41569-018-0064-2
  15. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12): 1822–1832. doi: 10.1038/s41591-019-0675-0
  16. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–1607. doi: 10.2337/diab.37.12.1595
  17. Crofts CAP, Zinn C, Wheldon M, Schofield G. Hyperinsulinemia: A unifying theory of chronic disease? Diabesity. 2015;1(4):34–43. doi: 10.15562/diabesity.2015.19
  18. Janssen JAMJL. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int J Mol Sci. 2021;22(15):7797. doi: 10.3390/ijms22157797
  19. Martyushev-Poklad AV, Yankevich DS, Petrova MV, Savitskaya NG. Hyperinsulinemia and age-related diseases: interrelations and approaches to treatment. Problems of Nutrition. 2022;91(3):21–31. (In Russ). doi: 10.33029/0042-8833-2022-91-3-21-31
  20. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58(4):495–505. doi: 10.1002/ana.20624
  21. Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. Biochim Biophys Acta. 2015; 1847(11):1387–1400. doi: 10.1016/j.bbabio.2015.05.021
  22. Haas RH. Mitochondrial Dysfunction in Aging and Diseases of Aging. Biology (Basel). 2019;8(2):48. doi: 10.3390/biology8020048
  23. Martyushev-Poklad AV, Guliev YaI, Kazakov IF, et al. Person-centered instruments in digital transformation of healthcare: ways to improve. Medical Doctor and Information Technology. 2021;(S5):4–13. (In Russ.)
  24. Martyushev-Poklad A, Yankevich D, Petrova M. Improving the Effectiveness of Healthcare: Diagnosis-Centered Care Vs. Person-Centered Health Promotion, a Long Forgotten New Model. Front Public Health. 2022;10:819096. doi: 10.3389/fpubh.2022.819096
  25. Di Ciaula A, Wang DQ, Portincasa P. An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol. 2018; 34(2):71–80. doi: 10.1097/MOG.0000000000000423
  26. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7
  27. Pfau ML, Ménard C, Russo SJ. Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol. 2018;58:411–428. doi: 10.1146/annurev-pharmtox-010617-052823
  28. Lukaczer D. Chapter 28. Clinical approaches to gastrointestinal imbalance. The “4R” program. In: Jones D, Quinn S, editors. Textbook of Functional Medicine. Gig Harbor, WA: Institute for Functional Medicine; 2005. P:462–468.
  29. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J. 2020;91(1):e13357. doi: 10.1111/asj.13357
  30. Fortea M, Albert-Bayo M, Abril-Gil M, et al. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr. 2021;8:718093. doi: 10.3389/fnut.2021.718093
  31. Lepeshkova TS, Beltyukov EK, Naumova VV, et al. Food allergy. Diagnosis, treatment and prevention. Ekaterinburg: USMU; 2021. 113 p. (In Russ).
  32. Damas OM, Garces L, Abreu MT. Diet as Adjunctive Treatment for Inflammatory Bowel Disease: Review and Update of the Latest Literature. Curr Treat Options Gastroenterol. 2019;17(2):313–325. doi: 10.1007/s11938-019-00231-8
  33. Campmans-Kuijpers MJE, Dijkstra G. Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients. 2021;13(4):1067. doi: 10.3390/nu13041067
  34. Konijeti GG, Kim N, Lewis JD, et al. Efficacy of the Autoimmune Protocol Diet for Inflammatory Bowel Disease. Inflamm Bowel Dis. 2017;23(11):2054–2060. doi: 10.1097/MIB.0000000000001221
  35. Staudacher HM, Whelan K. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut. 2017;66(8):1517–1527. doi: 10.1136/gutjnl-2017-313750
  36. Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol. 2016;229(2):R67–81. doi: 10.1530/JOE-15-0533

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies