Malnutrition in oncology: etiology, pathogenesis, and principles of correction

Cover Page

Cite item

Full Text

Abstract

Cancer is currently one of the leading causes of death. Mortality in this group of patients is due to both underlying disease course and therapy complications. The development of cachexia is one of the most important factors that affect both the quality of life of a patient with cancer and the treatment effectiveness. Presently, ideas about the pathogenesis of malnutrition in patients with cancer and its diagnostic methods are fairly clear. However, a particular patient needs to understand which processes are leading to the development of anorexia-cachexia syndrome. Concepts, such as anorexia, cachexia, and sarcopenia, reflect various possible variants of the course or stage of developing metabolic disorders. Their timely detection determines the duration and process intensity and assesses the prognosis of the disease course, as well as develops a patient-oriented nutritional support program. Understanding the pathogenesis of its development allows for the correction of emerging disorders throughout the patient treatment period.

Nutritional therapy is a key method that can influence the severity of cachexia. Undoubtingly, the progression of malnutrition is due to the multimodal effect of the tumor on the patient’s metabolism and can significantly affect the effectiveness of antitumor therapy. Therefore, basic principles of diagnosis and treatment are formulated, including early diagnosis, individual nutritional need calculation (proteins, energy), and the use of pharmaconutrients that can influence the severity of catabolic processes.

According to the patient-orientation concept, an oncologist should be involved in the formation of a nutritional therapy program, which allows a simultaneous selection of the most optimal scheme of specialized nutrition based on the patient’s condition, type and stage of neoplasm, nutrient introduction restrictions, taste preferences, and timely qualitative and quantitative nutrient composition adjustment against the background of the changing patient condition and needs.

The maximum effectiveness of nutritional support in patients with cancer can be achieved only with a multimodal approach of correcting all pathological processes that lead to malnutrition occurrence and progression.

About the authors

Denis S. Tsvetkov

Odintsovo Regional Hospital

Author for correspondence.
Email: tsvetkov75@gmail.com
ORCID iD: 0000-0003-1905-8627
SPIN-code: 6085-6359

MD, Cand. Sci. (Med.), Head of the Department Anesthesiology and Intensive Care

Russian Federation, 5, Marshal Biryuzov str., Moscow region, Odintsovo, 143003

References

  1. Pressoir M, Desne S, Berchery D, et al. Prevalence, risk factors and clinical implications of malnutrition in French Compehensive Cancer. Br J Cancer. 2010;102(6):966–971. doi: 10.1038/sj.bjc.6605578
  2. Ryan AM, Power DG, Daly L, et al. Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. Proc Nutr Soc. 2016;75(2):199–211. doi: 10.1017/S002966511500419Х
  3. Muscaritoli M, Arends J, Aapro M, et al. From guidelines to clinical practice: a roadmap for oncologists for nutrition therapy for cancer patients. Ther Adv Med Oncol. 2019;11:1–14. doi: 10.1177/175883591880084
  4. Hebuterne X, Lemarie E, Michallet M, et al. Prevalence of malnutrition and current use of nutrition support in patients with cancer. J Parenteral Enteral Nutr. 2014;38(2):196–204. doi: 10.1177/0148607113502674
  5. Planas M, Alvarez-Hernandez J, Leon-Sanz M, et al. Prevalence of hospital malnutrition in cancer patients: a sub-analysis of the PREDyCES study. Support Care Cancer. 2016;24(1):532–542. doi: 10.1007/s00520-015-2813-7
  6. Bail J, Meneses K, Demark-Wahnefried W. Nutritional Status and Diet in Cancer Prevention. Semin Oncol Nurs. 2016;32(3):206–214. doi: 10.1016/j.soncn.2016.05.004
  7. Cederholm T, Barazzoni R, Austin P, et al. ESPEN guidelines on definition and terminology of clinical nutrition. Clin Nutr. 2017; 36(1):49–64. doi: 10.1016/j.clnu.2016.09.004
  8. Fearon KS, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–495. doi: 10.1016/S1470-2045(10)70218-7
  9. Muscaritoli M, Anker SD, Argiles SD, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diaseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–159. doi: 10.1016/j.clnu.2009.12.004
  10. Prado CM, Cushen SJ, Orsso CE, et al. Sarcopenia and cachexia in the era obesity: clinical and nutritional impact. Proc Nutr Soc. 2016;75(2):188–189. doi: 10.1017/S0029665115004279
  11. Kawaguchi Y, Hanaoka J, Ohshio Y, et al. Does sarcopenia affect postoperative short-and long-term outcomes in patients with lung cancer? J Thorac Dis. 2021;13(3):1358–1369. doi: 10.21037/jtd-20-3072
  12. Alberda C, Alvadj-Korenic T, Mayan M, et al. Nutrition care in patients with head and neck or esophageal cancer: the patient perspective. Nutr Clin Pract. 2017;32:664–674.
  13. Gartner S, Kruger J, Aghdassi AA, et al. Nutrition in pancreatic cancer: a review. Gastrointestinal Tumors. 2016;2:195–202. doi: 10.1159/000442873
  14. Jordan T, Mastnak DM, Palamar N, et al. Nutritional therapy for patients with esophageal cancer. Nutr Cancer. 2018;70:23–29. doi: 10.1080/01635581.2017.1374417
  15. Freijer K, Tan SS, Koopmanschap MA, et al. The economic costs of disease related malnutrition. Clin Nutr. 2013;32(1):136–141.
  16. Fukuda Y, Yamamoto K, Hirao M, et al. Prevalence of malnutrition among gastric cancer patients undergoing gastrectomy and optimal preoperative nutritional support for preventing surgical site infections. Ann Surg Oncol. 2015;22 (Suppl 3):778–785. doi: 10.1245/s10434-015-4820-9
  17. Gellrich NC, Handschel J, Holtmann H, et al. Oral cancer malnutrition impacts weight and quality of life. Nutrients. 2015; 7(4):2145–2160. doi: 10.3390/nu7042145
  18. Maasberg S, Knappe-Drzikova B, Vonderbeck D, et al. Malnutrition predicts clinical outcome in patients with neuroendocrine neoplasias. Neuroendocrinology. 2017;104(1):11–25. doi: 10.1159/000442983
  19. Martin L, Senesse P, Gioulbasanis I, et al. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 2015;33(1):90–99. doi: 10.1200/JCO.2014.56.1894
  20. Aaldriks AA, van der Geest LG, Giltay EJ, et al. Frailty and malnutrition predictive of mortality risk in older patients with advanced colorectal cancer receiving chemotherapy. J Geriatr Oncol. 2013;4(3):218–226. doi: 10.1016/j.jgo.2013.04.001
  21. Shen Y, Hao Q, Zhou J, et al. The impact of frailty and sarcopenia on postoperative outcomes in older patients undergoing gastrectomy surgery: a systematic review and meta-analysis. BMC Geriatr. 2017;17:188. doi: 10.1186/s12877-017-0569-2
  22. Bozzeti F. Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann Oncol. 2017;28:2107–2118. doi: 10.1093/annonc/mdx271
  23. Cheng X, Wei S, Zwang H. Nurse-led interventions on quality of life for patients with cancer: a meta-analysis. Medicine (Baltimore). 2018;97(34):e12037. doi: 10.1097/MD.0000000000012037
  24. Firkins J, Hansen L, Driessnack, et al. Quality of life in “chronic” cancer survivors: a meta-analysis. J Cancer Surviv. 2020;14(4): 504–517. doi: 10.1007/s11764-020-00869-9
  25. Laird BJ, Fallon M, Hjermstad MJ, et al. Quality of life in patients with advanced cancer: differential association with performance status and systemic inflammatory response. J Clin Oncol. 2016; 34(23):2769–2775. doi: 10.1200/JCO.2015.65.7742
  26. Murata M. Inflammation and cancer. Environ Health Prev Med. 2018;23(1):50. doi: 10.1186/s12199-018-0740-1
  27. Singh N, Baby D, Rajguru JP, et al. Inflammation and cancer. Ann Afr Med. 2019;18(3):121–126. doi: 10/4103/aam.aam_56_18
  28. Marques P, de Vires F, Dekkers OM, et al. Serum inflammation-based Scores in Endocrine Tumors. J Clin Endocrinol Metab. 2021; 106(10):e3796–e3819. doi: 10/1210/clinem/dgab238
  29. McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013;39(5):534–540. doi: 10.1016/j.ctrv.2012.08.003
  30. Steenhagen E. Preoperative nutritional optimization of esophageal cancer patients. J Thorac Dis 2019; 11(Suppl 5): S645–S653. doi: 10.21037/jtd2018.11.33.
  31. Li Y, Jin H, Chen Y, et al. Cancer cachexia: molecular mechanism and pharmacological management. Biochem J. 2021;478(9): 1663–1668. doi: 10.1042/BCJ20201009
  32. Gaafer OU, Zimmers TA. Nutrition challenges of cancer cachexia. JPEN J Parenteral Enteral Nutr. 2021;45(52):16–25 doi: 10.1002/jpen2287
  33. Patel HJ, Patel BM. TNF-alpha and cancer cachexia: molecular insights and clinical implications. Life Sci. 2017;170:56–63. doi: 10.1016/j.lfs.2016.11.033
  34. Schmidt SF, Rohm M, Herzig S, et al. Cancer cachexia: more that skeletal muscle wasting. Trends Cancer. 2018;4:849–860. doi: 10.1016/j.trecan.2018.10.001
  35. Boyle DA. Contemporary insight into cancer cachexia for oncology nurses. Asia Pac J Oncol Nurs. 2021;8(5):462–470. doi: 10.4103/apjon.apjon-2115
  36. Schiessel DL, Baracos VE. Barriers to cancer nutrition therapy: excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc Nutr Soc. 2018;77(4):394–402. doi: 10.1017/S0029665118000186
  37. Cheng C, Geng F, Cheng X, et al. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 2018;38(1):27. doi: 10.1186/s40880-018-0301-4
  38. Daas SI, Rizeq BR, Nasrallah GK. Adipose tissue dysfunction in cancer cachexia. J Cell Physiol. 2018;234(1):13–22. doi: 10.1002/cp.26811
  39. Cushen SJ, Power DG, Teo MY. Body composition by computed tomography as a predictor of toxicity in patients with renal cell carcinoma treated with sunitinib. Am J Clin Oncol. 2017;40(1):47–52. doi: 10.1097/COC.0000000000000061
  40. Feliu J, Heredia-Soto V, Girones R, et al. Management of the toxicity of chemotherapy and target therapies in elderly cancer patients. Clin Transl Oncol. 2020;22(4):457–467. doi: 10.1007/s12094-019-02167
  41. Grabenbauer GG, Holger G. Management of radiation and chemotherapy related acute toxicity in gastrointestinal cancer. Best Pract Res Clin Gastroenterol. 2016;30:655–664. doi: 10.1016/j.bpg.2016.06.001
  42. Marx W, Kiss N, McCarhy AL, et al. Chemotherapy-induced nausea and vomiting: a narrative review to inform dietetics practice. J Acad Nutr Diet. 2016;116(5):819–827. doi: 10.1016/j.jand.2015.10.020
  43. Arends J, Bachmann P, Baracos V, et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017;36(1):11–48. doi: 10.1016/j.clnu.2016.07.015
  44. Martin L. Diagnostic criteria for cancer cachexia: data versus dogma. Curr Opin Clin Nutr Metab Care. 2016;19(3):188–198. doi: 10/1097/MCO.0000000000000272
  45. Simon I, Baldwin C, Kalea AZ. Cannabionoid interventions for improving cachexia outcomes in cancer: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):23–41. doi: 10.1002/jcsm12861
  46. Chen H, Hu N, Chang P, et al. Modified Glasgow prognostic score might be a prognostic factor for hepatocellular carcinoma: a meta-analysis. Panminerva Med. 2017;59(4):302–307. doi: 10.23736/S0031-0808.16.03236-5
  47. Dolan RD, McMillan DC. The prevalence of cancer associated systemic inflammation: implications of prognostic studies using the Glasgow Prognostic Score. Crit Rev Oncol Hematol. 2020;150:102962. doi: 10.1016/j.critevonc 2020.192962
  48. Kubota T, Shoda K, Konishi H, et al. Nutrition update in gastric cancer surgery. Ann Gastroenterol Surg. 2020;4(4):360–368. doi: 10/1002/ags3/12351
  49. Deng HY, Hou L, Zha P, et al. Sarcopenia is an independent unfavorable prognostic factor of non-small cell lung cancer after surgical resection: a comprehensive systematic review and meta-analysis. Eur J Surg Oncol. 2019;45(5):728–735. doi: 10.1016/j.ejso.2018.09.026
  50. Simonsen C, de Heer P, Bjerre ED, et al. Sarcopenia and postoperative complication risk in gastrointestinal surgical oncology: a meta-analysis. Ann Surg. 2018;268(1):58–69. doi: 10.1097/SLA.0000000000002679
  51. Nipp RD, Fuchs G, El-Jawahri A, et al. Sarcopenia is associated with quality of life and depression in patients with advanced cancer. Oncologist. 2018;23(1):97–104. doi: 10.1634/theoncologist.2017-0255
  52. Wang JB, Xue Z, Lu J, et al. Effect of sarcopenia on short-and long outcomes in patients with gastric neuroendocrine neoplasms after radical gastrectomy: results from a large, two-institution series. BMC Cancer. 2020;20:1002. doi: 10.1186/s12885-020-07506-9
  53. Kim EY, Lee HY, Kim KW, et al. Preoperative computed-tomography-determined sarcopenia and postoperative outcome after surgery for non-small cell lung cancer. Scand J Surg. 2018; 107(3):244–251. doi: 10.1177/1457496917748221
  54. Su H, Ruan J, Chen T, et al. CT-assessed sarcopenia is a predictive factor for both long-term and short-term outcome in gastrointestinal oncology patients: a systematic review and meta-analysis. Cancer Imaging. 2019;19:82. doi: 10.1186/s40644-019-0270-0
  55. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11–31. doi: 10.1038/nrclinonc.2016.60
  56. Purcell SA, Elliot SA, Baracos VE, et al. Key determinants of energy expenditure in cancer and implications for clinical practice. Eur J Clin Nutr. 2016;70(11):1230–1238. doi: 10.1038/ejcn.2016.96
  57. Weimann A, Braga M, Carli F, et al. ESPEN guideline: clinical nutrition in surgery. Clin Nutr. 2017;36(3):623–650. doi: 10.1016/j.clnu.2017.02.013
  58. Leiderman IN, Gritsan AI, Zabolotskikh IB, et al. Perioperative nutritional support. Methodological recommendations of the Federation of Anesthesiologists and Resuscitators. Bulletin of intensive Care named after A.I. Saltanov. 2021;(4):7–20. (In Russ). doi: 10.21320/1818-474X-2021-4-7-20
  59. Leiderman IN, Yaroshetsky AI. On the question of the need for protein in patients of intensive care and intensive care units. Bulletin of Intensive Care named after A.I. Saltanov. 2018;(3):59–66. (In Russ).
  60. Luft VM, Afonchikov VS, Dmitriev AV, et al. Guidelines for clinical nutrition. Saint Petersburg: Art-Express; 2016. 492 p. (In Russ).
  61. Nikolenko AV, Leiderman IN, Nikolenko VV. Screening of key markers of protein and micronutrient metabolism in patients of intensive care units with acute pathology of abdominal organs. Bulletin of Intensive Care named after A.I. Saltanov. 2019;(4):81–87. (In Russ). doi: 10.21320/1818474X-2019-4-81-87
  62. Da Silva JS, Seres DS, Sabino K, et al. ASPEN consensus recommendations for Refeeding Syndrome. Nutr Clin Pract. 2020; 35(2):178–195. doi: 10.1002/ncp.10474
  63. Friedli N, Odermatt J, Reber E, et al. Refeeding-syndrome: update and clinical advice for prevention, diagnosis and treatment. Curr Opin Gastroenterol. 2020;36(2):136–140. doi: 10.1097/MOG.0000000000000605
  64. Baldwin C. The effectiveness of nutritional interventions in malnutrition and cachexia. Proc Nutr Soc. 2015;74(4):397–404. doi: 10.1017/S0029665115002311
  65. Lee JL, Leong LP, Lim SL. Nutritional intervention approaches to reduce malnutrition in oncology patients: a systematic review. Support Care Cancer. 2016;24(1):469–480. doi: 10.1007/s00520-015-2958-4
  66. Deutz NE, Safar A, Schutzler S, et al. Muscle protein synthesis in cancer patients can be stimulated with a specially formulated medical food. Clin Nutr. 2011;30(6):759–768. doi: 10.1016/j.clnu.2011.05.008
  67. Rondanelli M, Klersy C, Terracol G, et al. Whey protein, amino acids and vitamin D, supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr. 2016; 103(3):830–840. doi: 10.3945/ajcn.115.113357
  68. D’Angelo S, Motti ML, Meccariello R, et al. Omega-3 and Omega-6 polyunsaturated fatty acids, obesity and cancer. Nutrients. 2020;12(9):2751. doi: 10.3390/nu12092751
  69. Vega OM, Abkenari S, Tong Z, et al. Omega-3 polyunsaturated fatty acids and lung cancer: nutrition or pharmacology? Nutr Cancer. 2021;73(4):541–561. doi: 10.1080/01635581.2020.1761408
  70. Camargo CQ, Mocellin MC, Pastore Silva JA, et al. Fish oil supplementation during chemotherapy increases posterior time to tumor progression in colorectal cancer. Nutr Cancer. 2016;68(1): 70–76. doi: 10.1080/01635581.2016.1115097
  71. Sanchez-Lara K, Turcott JG, Juarez-Hernandez E, et al. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: randomized trial. Clin Nutr. 2014;33(6):1017–1023. doi: 10.1016/j.clnu.2014.03.006
  72. Van der Meij BS, Langius JA, Spreeuwenberg MD, et al. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT. Eur J Clin Nutr. 2012;66(3):399–404. doi: 10.1038/ejcn.2011.214
  73. Kanekiyo S, Takeda S, Lida M, et al. Efficaly of perioperative immunonutrition in esophageal cancer patients undergoing esophagectomy. Nutrition. 2019;59:96–102. doi: 10.1016/j.nut2018.08.006
  74. Kubota T, Shoda K, Koishi H, et al. Nutrition update in gastric cancer surgery. Ann Gastroenterol Surg. 2020;4(4):360–368. doi: 10.1002/ags3.12351
  75. Talvas J, Garrait G, Goncalves-Mendes N, et al. Immunonutrtion stimulates immune functions and antioxidant defense capacities of leukocytes in radiochemotherapy-treated head, neck end esophageal cancer patients: a double-blind randomized clinical trial. Clin Nutr. 2015;34(5):810–817. doi: 10.1016/j.clnu.2014.12.002
  76. Marimuthu K, Varadhan KK, Ljungvist O, et al. A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann Surg. 2012;255(6):1060–1068. doi: 10.1097/SLA.0b013e318252edf8
  77. Osland E, Hossain MB, Khan S, et al. Effect of timing of pharmaconutrition (immunonutrition) administration on outcome of elective surgery for gastrointestinal malignancies: a systematic review and meta-analysis. JPEN J Parenter Enter Nutr. 2014;38(1): 53–69. doi: 10.1177/0148607112474825
  78. Ljungqvist O, Scott M, Fearon KC, et al. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152(3):292–298. doi: 10.1001/jamasurg.2016.4952
  79. Kabata P, Jastrzebski T, Kakol M, et al. Preoperative nutritional support in cancer patients with no clinical signs of malnutrition-prospective randomized controlled trial. Support Care Cancer. 2015;23(2):365–370. doi: 10.1007/s00520-014-2363-4
  80. Druml C, Ballmer PE, Druml W, et al. ESPEN guideline on ethical aspects of artificial nutrition and hydration. Clin Nutr. 2016;35(3): 545–556. doi: 10.1016/j.clnu.2016.02.006

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Malnutrition and cancer: anorexia, cachexia, sarcopenia.

Download (779KB)
3. Fig. 2. The relationship of immunological, metabolic reactions and clinical symptoms.

Download (632KB)
4. Fig. 3. Effect of pro-inflammatory cytokines on metabolism.

Download (630KB)
5. Fig. 4. Volume of nutritional support and level malnutrition.

Download (799KB)

Copyright (c) 2021 Tsvetkov D.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies