Pathogenesis of bacterial keratitis
- Authors: Dzhereshtieva M.S1, Tlupova T.G1, Teuvazhukova D.A1, Alsairafi M.A.2, Al D.R.1
-
Affiliations:
- Kabardino-Balkarian State University named after H.M. Berbekov
- Republican Clinical Hospital, Nalchik
- Issue: Vol 8, No 5 (2025)
- Pages: 24-36
- Section: ARTICLES
- URL: https://journals.rcsi.science/2658-3313/article/view/377451
- ID: 377451
Cite item
Abstract
About the authors
M. S Dzhereshtieva
Kabardino-Balkarian State University named after H.M. Berbekov
Email: merjen.bagyeva@gmail.com
T. G Tlupova
Kabardino-Balkarian State University named after H.M. Berbekov
D. A Teuvazhukova
Kabardino-Balkarian State University named after H.M. Berbekov
Email: di.teu.00@mail.ru
Maram Ahmed Ibrahim Ali Abdulla Alsairafi
Republican Clinical Hospital, Nalchik
Dubai Raad Nabil Mohammed Abdulhamid Al
Kabardino-Balkarian State University named after H.M. Berbekov
References
- Alarcon I. et al. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Invest Ophthalmol Vis Sci. 2011. Vol. 52. No. 3. P. 1368 – 1377. doi: 10.1167/iovs.10-6125
- Andersson J. et al. Ocular surface microbiota in contact lens users and contact-lens-associated bacterial keratitis // Vision (Switzerland). 2021. Vol. 5. No. 2. doi.org/10.3390/vision5020027
- Chan V.F. et al. A Systematic Review of Clinical Practice Guidelines for Infectious and Non-infectious Conjunctivitis // Ophthalmic Epidemiology. 2022. Vol. 29. No. 5. P. 473 – 482. doi: 10.1080/09286586.2021.1971262.
- Fleiszig S.M.J. et al. Contact lens-related corneal infection: Intrinsic resistance and its compromise // Progress in Retinal and Eye Research. 2020. Vol. 76. doi: 10.1016/j.preteyeres.2019.100804
- Galdiero M. et al. Current evidence on the ocular surface microbiota and related diseases // Microorganisms. 2020. Vol. 8. No. 7. https://doi.org/10.1016/j.oftale.2023.08.005
- Johnson A.C. et al. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation // Invest Ophthalmol Vis Sci. 2005. Vol. 46. No. 2. Р. 589 – 595. doi: 10.1167/iovs.04-1077
- Kels B.D., Grzybowski A., Grant-Kels J.M. Human ocular anatomy // Clin Dermatol. 2015. Vol. 33. No. 2. Р. 140 – 146. doi: 10.1016/j.clindermatol.2014.10.006
- Kumar A., Yu F.-S. Toll-Like Receptors and Corneal Innate Immunity // Curr Mol Med. 2006. Vol. 6. No. 3. Р. 327 – 237. doi: 10.2174/156652406776894572.
- Lakhundi S., Siddiqui R., Khan N.A. Pathogenesis of microbial keratitis // Microbial Pathogenesis. 2017. Vol. 104. Р. 97 – 109. doi: 10.1016/j.micpath.2016.12.013.
- Lawrence S.L. et al. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation // Sci Rep. 2015. Vol. 5. doi.org/10.1038/srep14352
- Micera A. et al. Toll-like receptors and the eye // Current Opinion in Allergy and Clinical Immunology. 2005. Vol. 5. No. 5. 451 – 458. doi: 10.1097/01.all.0000182537.55650.99
- Sharma S. Diagnosis of infectious diseases of the eye // Eye. 2012. Vol. 26. No. 2. Р. 177 – 184. doi: 10.1038/eye.2011.275.
- Streilein J.W. Ocular immune privilege: Therapeutic opportunities from an experiment of nature // Nature Reviews Immunology. 2003. Vol. 3. No. 11. Р. 879 – 889. doi: 10.1038/nri1224.
- Tam C. et al. 3D quantitative imaging of unprocessed live tissue reveals epithelial defense against bacterial adhesion and subsequent traversal requires MyD88 // PLoS One. 2011. Vol. 6. No. 8. doi.org/10.1371/journal.pone.0024008
- Thanabalasuriar A. et al. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa. Ocular Biofilms and Restrict Brain Invasion // Cell Host Microbe. 2019. Vol. 25. No. 4. Р. 526 – 536. e4. doi: 10.1016/j.chom.2019.02.007
- Ueta M. et al. Intracellularly Expressed TLR2s and TLR4s Contribution to an Immunosilent Environment at the Ocular Mucosal Epithelium // The Journal of Immunology. 2004. Vol. 173. No. 5. Р. 3337 – 3347. doi: 10.4049/jimmunol.173.5.3337
- Ueta M. Innate immunity of the ocular surface and ocular surface inflammatory disorders // Cornea. 2008. Vol. 27. No. SUPPL. 1.
- Ung L., Chodosh J. Foundational concepts in the biology of bacterial keratitis // Exp Eye Res. 2021. Vol. 209. No. 1. Рр. 31-40. doi: 10.1097/ICO.0b013e31817f2a7f
- Wan S.J. et al. IL-1R and MyD88 contribute to the absence of a bacterial microbiome on the healthy murine cornea // Front Microbiol. 2018. Vol. 9. No. MAY. doi.org/10.3389/fmicb.2018.01117
- Wang Y.-J. et al. Commensals Serve as Natural Barriers to Mammalian Cells during Acanthamoeba castellanii Invasion // Microbiol Spectr. 2021. Vol. 9. No. 3. Р. 127 – 129.
- Whitcher J.P., Srinivasan M., Upadhyay M.P. Corneal blindness: A global perspective // Bull World Health Organ. 2001. Vol. 79. No. 3. Р. 214 – 221.
- Willcox M.D.P. et al. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis // Microbiology. 2008. Vol. 154. No. 8. Р. 2184 – 2194.
- Willcox M.D.P. et al. Contact lens case contamination during daily wear of silicone hydrogels // Optometry and Vision Science. 2010. Vol. 87. No. 7. P. 456 – 464. doi: 10.1097/OPX.0b013e3181e19eda
- Wong R.L.M. et al. New treatments for bacterial keratitis // Journal of Ophthalmology. 2012. Vol. 2012. doi: 10.1155/2012/831502
- Zimmerman A.B. et al. Water Exposure is a Common Risk Behavior among Soft and Gas-Permeable Contact Lens Wearers // Cornea. 2017. Vol. 36. No. 8. P. 995 – 1001.
Supplementary files
