Pathogenesis of bacterial keratitis

Cover Page

Cite item

Abstract

the article provides a systematic review of the anatomy of the eye, immunological reactions, and major nosologies. It is noted that the ocular microbiota plays a role in maintaining the homeostasis of the ocular surface, preventing colonization by pathogenic species. Changes in this delicate ecosystem lead to various inflammatory diseases. It is determined that infectious keratitis is an inflammation of the cornea caused by pathogenic microbes that eventually penetrate the corneal stroma, causing inflammation and destruction of these structures. According to the etiologic agents, it can be divided into bacterial, viral, fungal and caused by protozoa. The features of the clinical course, diagnosis, epidemiology and etiology of each subtype are considered. In vivo confocal microscopy has been shown to be a valuable tool for detecting fungal filaments in fungal keratitis, but it cannot differentiate Fusarium from Aspergillus spp, so slit lamp corneal scraping followed by culture is still the gold standard for fungal species identification. However, according to the literature, the overall sensitivity and specificity of IVCM for detecting fungal pathogens, especially filamentous fungi, are estimated at 66.7–85.7% and 81.4–100%, respectively. For microscopy after Gram staining, Grunewald, Giemsa, or stains such as calcofluor white and lactophenol cotton blue can also be used.

About the authors

M. S Dzhereshtieva

Kabardino-Balkarian State University named after H.M. Berbekov

Email: merjen.bagyeva@gmail.com

T. G Tlupova

Kabardino-Balkarian State University named after H.M. Berbekov

D. A Teuvazhukova

Kabardino-Balkarian State University named after H.M. Berbekov

Email: di.teu.00@mail.ru

Maram Ahmed Ibrahim Ali Abdulla Alsairafi

Republican Clinical Hospital, Nalchik

Dubai Raad Nabil Mohammed Abdulhamid Al

Kabardino-Balkarian State University named after H.M. Berbekov

References

  1. Alarcon I. et al. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Invest Ophthalmol Vis Sci. 2011. Vol. 52. No. 3. P. 1368 – 1377. doi: 10.1167/iovs.10-6125
  2. Andersson J. et al. Ocular surface microbiota in contact lens users and contact-lens-associated bacterial keratitis // Vision (Switzerland). 2021. Vol. 5. No. 2. doi.org/10.3390/vision5020027
  3. Chan V.F. et al. A Systematic Review of Clinical Practice Guidelines for Infectious and Non-infectious Conjunctivitis // Ophthalmic Epidemiology. 2022. Vol. 29. No. 5. P. 473 – 482. doi: 10.1080/09286586.2021.1971262.
  4. Fleiszig S.M.J. et al. Contact lens-related corneal infection: Intrinsic resistance and its compromise // Progress in Retinal and Eye Research. 2020. Vol. 76. doi: 10.1016/j.preteyeres.2019.100804
  5. Galdiero M. et al. Current evidence on the ocular surface microbiota and related diseases // Microorganisms. 2020. Vol. 8. No. 7. https://doi.org/10.1016/j.oftale.2023.08.005
  6. Johnson A.C. et al. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation // Invest Ophthalmol Vis Sci. 2005. Vol. 46. No. 2. Р. 589 – 595. doi: 10.1167/iovs.04-1077
  7. Kels B.D., Grzybowski A., Grant-Kels J.M. Human ocular anatomy // Clin Dermatol. 2015. Vol. 33. No. 2. Р. 140 – 146. doi: 10.1016/j.clindermatol.2014.10.006
  8. Kumar A., Yu F.-S. Toll-Like Receptors and Corneal Innate Immunity // Curr Mol Med. 2006. Vol. 6. No. 3. Р. 327 – 237. doi: 10.2174/156652406776894572.
  9. Lakhundi S., Siddiqui R., Khan N.A. Pathogenesis of microbial keratitis // Microbial Pathogenesis. 2017. Vol. 104. Р. 97 – 109. doi: 10.1016/j.micpath.2016.12.013.
  10. Lawrence S.L. et al. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation // Sci Rep. 2015. Vol. 5. doi.org/10.1038/srep14352
  11. Micera A. et al. Toll-like receptors and the eye // Current Opinion in Allergy and Clinical Immunology. 2005. Vol. 5. No. 5. 451 – 458. doi: 10.1097/01.all.0000182537.55650.99
  12. Sharma S. Diagnosis of infectious diseases of the eye // Eye. 2012. Vol. 26. No. 2. Р. 177 – 184. doi: 10.1038/eye.2011.275.
  13. Streilein J.W. Ocular immune privilege: Therapeutic opportunities from an experiment of nature // Nature Reviews Immunology. 2003. Vol. 3. No. 11. Р. 879 – 889. doi: 10.1038/nri1224.
  14. Tam C. et al. 3D quantitative imaging of unprocessed live tissue reveals epithelial defense against bacterial adhesion and subsequent traversal requires MyD88 // PLoS One. 2011. Vol. 6. No. 8. doi.org/10.1371/journal.pone.0024008
  15. Thanabalasuriar A. et al. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa. Ocular Biofilms and Restrict Brain Invasion // Cell Host Microbe. 2019. Vol. 25. No. 4. Р. 526 – 536. e4. doi: 10.1016/j.chom.2019.02.007
  16. Ueta M. et al. Intracellularly Expressed TLR2s and TLR4s Contribution to an Immunosilent Environment at the Ocular Mucosal Epithelium // The Journal of Immunology. 2004. Vol. 173. No. 5. Р. 3337 – 3347. doi: 10.4049/jimmunol.173.5.3337
  17. Ueta M. Innate immunity of the ocular surface and ocular surface inflammatory disorders // Cornea. 2008. Vol. 27. No. SUPPL. 1.
  18. Ung L., Chodosh J. Foundational concepts in the biology of bacterial keratitis // Exp Eye Res. 2021. Vol. 209. No. 1. Рр. 31-40. doi: 10.1097/ICO.0b013e31817f2a7f
  19. Wan S.J. et al. IL-1R and MyD88 contribute to the absence of a bacterial microbiome on the healthy murine cornea // Front Microbiol. 2018. Vol. 9. No. MAY. doi.org/10.3389/fmicb.2018.01117
  20. Wang Y.-J. et al. Commensals Serve as Natural Barriers to Mammalian Cells during Acanthamoeba castellanii Invasion // Microbiol Spectr. 2021. Vol. 9. No. 3. Р. 127 – 129.
  21. Whitcher J.P., Srinivasan M., Upadhyay M.P. Corneal blindness: A global perspective // Bull World Health Organ. 2001. Vol. 79. No. 3. Р. 214 – 221.
  22. Willcox M.D.P. et al. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis // Microbiology. 2008. Vol. 154. No. 8. Р. 2184 – 2194.
  23. Willcox M.D.P. et al. Contact lens case contamination during daily wear of silicone hydrogels // Optometry and Vision Science. 2010. Vol. 87. No. 7. P. 456 – 464. doi: 10.1097/OPX.0b013e3181e19eda
  24. Wong R.L.M. et al. New treatments for bacterial keratitis // Journal of Ophthalmology. 2012. Vol. 2012. doi: 10.1155/2012/831502
  25. Zimmerman A.B. et al. Water Exposure is a Common Risk Behavior among Soft and Gas-Permeable Contact Lens Wearers // Cornea. 2017. Vol. 36. No. 8. P. 995 – 1001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).