Методы количественного определения содержания липидов и жирных кислот в микроводорослях
- Авторы: Морщинин И.В.1
-
Учреждения:
- Университет ИТМО
- Выпуск: Том 8, № 2 (2025)
- Страницы: 267-275
- Раздел: Статьи
- URL: https://journals.rcsi.science/2618-9771/article/view/310364
- DOI: https://doi.org/10.21323/2618-9771-2025-8-2-267-275
- ID: 310364
Цитировать
Полный текст
Аннотация
Микроводоросли представляют собой перспективное сырьё для устойчивого производства биотоплива и ценных биопродуктов благодаря высокой липидной продуктивности и быстрому темпу роста микроводорослей. Точное и воспроизводимое количественное определение липидов имеет решающее значение для отбора штаммов, оптимизации процессов и масштабирования производства. Настоящий обзор представляет собой всестороннюю и критическую оценку современных методов количественного анализа липидов, применяемых к микроводорослям. Рассмотренные методики классифицируются по типу применения: скрининговые, количественные и профилирующие подходы, включая такие технологии, как экстракция растворителями, in situ и прямая этерификация, колориметрические тесты, спектроскопические методы (NIR, FTIR), а также хроматографические техники (ГХ, ВЭЖХ–МС/МС). Каждый метод оценивается по нескольким критериям, включая аналитическую точность, пропускную способность, требования к образцам, техническую сложность и потенциал стандартизации. Результаты обобщаются в виде сравнительных таблиц. Несмотря на высокую скорость и простоту применения, скрининговые инструменты (например, Nile Red, SPV) недостаточно точны и воспроизводимы. Количественные методы, такие как кислотно-катализируемая in situ этерификация в сочетании с газовой хроматографией, демонстрируют оптимальное соотношение точности и масштабируемости применения. Методы профилирования, включая ВЭЖХ–МС/МС, обеспечивают наивысшее молекулярное разрешение, но требуют значительных экономических и трудовых затрат. Обзор подчёркивает необходимость гармонизации методик и обсуждает компромиссы, связанные с выбором аналитического подхода в научных и прикладных целях. Предлагаются практические рекомендации по выбору наиболее подходящих методов в зависимости от контекста применения — от раннего скрининга до продвинутого липидомного профилирования.
Об авторах
И. В. Морщинин
Университет ИТМО
Автор, ответственный за переписку.
Email: keshanowak@gmail.com
инженер, факультет экотехнологий 197101, Санкт-Петербург, Кронверкский пр., д. 49, лит. А
Список литературы
- Nguyen, H. T. D., Ramli, A., Kee, L. M. (2017). A review on methods used in analysis of microalgae lipid composition. Journal of the Japan Institute of Energy 96(12), 532–537. https://doi.org/10.3775/jie.96.532
- Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A. et al. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 384, Article 132236. https://doi.org/10.1016/j.foodchem.2022.132236
- Yao, L., Gerde, J. A., Lee, S. L., Wang, T., Harrata, K. A. (2015). Microalgae lipid characterization. Journal of Agricultural and Food Chemistry, 63(6), 1773–1787. https://doi.org/10.1021/jf5050603
- Challagulla, V., Nayar, S., Walsh, K., Fabbro, L. (2017). Advances in techniques for assessment of microalgal lipids. Critical Reviews in Biotechnology, 37(5), 566–578. https://doi.org/10.1080/07388551.2016.1206058
- Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
- Morales, M., Aflalo, C., Bernard, O. (2021). Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass and Bioenergy, 150, Article 106108. https://doi.org/10.1016/j.biombioe.2021.106108
- Byreddy, A., Gupta, A., Barrow, C., Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002
- Yang, M., Fan, Y., Wu, P.-C., Chu, Y.-D., Shen, P. — L., Xue, S. et al. (2017). An extended approach to quantify triacylglycerol in microalgae by characteristic fatty acids. Frontiers in Plant Science, 8, Article 1949. https://doi.org/10.3389/fpls.2017.01949
- Blanco-Llamero, C., García-García, P., Señoráns, F. J. (2024). Efficient green extraction of nutraceutical compounds from nannochloropsis gaditana: A comparative electrospray ionization LC–MS and GC–MS analysis for lipid profiling. Foods, 13(24), Article 4117. https://doi.org/10.3390/foods13244117
- Folch, J., Lees, M., Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. et al. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077
- Elsey, D., Jameson, D., Raleigh, B., Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68(3), 639–642. https://doi.org/10.1016/j.mimet.2006.11.008
- Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O. et al. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels, 8(1), Article 42. https://doi.org/10.1186/s13068-015-0220-4
- Wahlen, B.D., Willis, R.M., Seefeldt, L.C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102(3), 2724–2730. http://dx.doi.org/10.1016/j.biortech.2010.11.026
- Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., Wijffels, R. H. (2013). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226. https://doi.org/10.1016/j.biortech.2012.08.003
- Meng, Y., Yao, C., Xue, S., Yang, H. (2014). Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresource Technology, 151, 347–354. https://doi.org/10.1016/j.biortech.2013.10.064
- Dean, A. P., Sigee, D. C., Estrada, B., Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101(12), 4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065
- Iverson, S. J., Lang, S. L., Cooper, M. H. (2001). Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283–1287. https://doi.org/10.1007/s11745-001-0843-0
- Saini, R. K., Prasad, P., Shang, X., Keum, Y. -S. (2021). Advances in lipid extraction methods — A review. International Journal of Molecular Sciences, 22(24), Article 13643. https://doi.org/10.3390/ijms222413643
- Lewis, T., Nichols, P. D., McMeekin, T. A. (2000). Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods, 43(2), 107–116. https://doi.org/10.1016/s0167-7012(00)00217-7
- Halim, R., Danquah, M. K., Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001
- Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, 2018, Article 1503126. https://doi.org/10.1155/2018/1503126
- Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1, Supplement), S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
- Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1), 41–47. https://doi.org/10.1016/j.mimet.2009.01.001
- Cooper, M. S., Hardin, W. R., Petersen, T. W., Cattolico, R. A. (2010). Visualizing “green oil” in live algal cells. Journal of Bioscience and Bioengineering, 109(2), 198–201. https://doi.org/10.1016/j.jbiosc.2009.08.004
- Brennan, L., Fernández, A.B., Mostaert, A. S., Owende, P. (2012). Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. Journal of Microbiological Methods, 90(2), 137–143. https://doi.org/10.1016/j.mimet.2012.03.020
- Khozin-Goldberg, I., Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696–701. https://doi.org/10.1016/j.phytochem.2006.01.010
- Guschina, I. A., Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160–186. https://doi.org/10.1016/j.plipres.2006.01.001
- Triebl, A., Trötzmüller, M., Hartler, J., Stojakovic, T., Köfeler, H. C. (2017). Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. Journal of Chromatography B, 1053, 72–80. https://doi.org/10.1016/j.jchromb.2017.03.027
- Li-Beisson, Y., Thelen, J. J., Fedosejevs, E., Harwood, J. L. (2019). The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 74, 31–68. https://doi.org/10.1016/j.plipres.2019.01.003
- Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 160, 393–400. https://doi.org/10.1016/j.foodchem.2014.03.087
- Pääkkönen, S., Pölönen, I., Calderini, M., Yli-Tuomola, A., Ruokolainen, V., Vihinen-Ranta, M. et al. (2025). Lipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging. Journal of Applied Phycology, 37(1), 205–219. https://doi.org/10.1007/s10811-024-03397-6
- Shao, Y., Gu, W., Qiu, Y. A., Wang, S., Peng, Y., Zhu, Y. M. et al. (2020). Lipids monitoring in Scenedesmus obliquus based on terahertz technology. Biotechnology for Biofuels, 13(1), Article 161. https://doi.org/10.1186/s13068-020-01801-0
- Kiyani, D. A., Maryam, S., Amina, S. J., Ahmad, A., Chattha, M. W. A., Janjua, H. A. (2023). Lipid extraction and analysis of microalgae strain pectinodesmus PHM3 for biodiesel production. BMC Biotechnology, 23(1), Article 20. https://doi.org/10.1186/s12896-023-00784-8
- Bouillaud, D., Drouin, D., Charrier, B., Jacquemmoz, C., Farjon, J., Giraudeau, P. et al. (2020). Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for microalgae cultivated in photobioreactors. Process Biochemistry, 93, 63–68. https://doi.org/10.1016/j.procbio.2020.03.016
- Bouillaud, D., Heredia, V., Castaing-Cordier, T., Drouin, D., Charrier, B., Gonçalves, O. et al. (2019). Benchtop flow NMR spectroscopy as an online device for the in vivo monitoring of lipid accumulation in microalgae. Algal Research, 43, Article 101624. https://doi.org/10.1016/j.algal.2019.101624
- Cheng, F., Cui, Z., Chen, L., Jarvis, J., Paz, N., Schaub, T. et al. (2017). Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry. Applied Energy, 206, 278–292. https://doi.org/10.1016/j.apenergy.2017.08.105
- Harini, A. B., Sarangi, N. V., Nisha, N., Rajkumar, R. (2023). Cultivation of marine diatom, Amphora sp. in municipal wastewater for enhancing lipids toward sustainable biofuel production. South African Journal of Botany, 155, 288–297. https://doi.org/10.1016/j.sajb.2023.02.007
- Akonjuen, B. M., Onuh, J. O., Aryee, A. N. A. (2023). Bioactive fatty acids from non-conventional lipid sources and their potential application in functional food development. Food Science and Nutrition, 11(10), 5689–5700. https://doi.org/10.1002/fsn3.3521
- Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Nanda, M. (2020). Impact of glyphosate herbicide stress on metabolic growth and lipid inducement in Chlorella sorokiniana UUIND6 for biodiesel production. Algal Research, 51, Article 102071. https://doi.org/10.1016/j.algal.2020.102071
- Martínez-Bisbal, M. C., Mestre, N. C., Martínez-Máñez, R., Bauzá, J., Fillol, M. A. (2019). Microalgae degradation follow up by voltammetric electronic tongue, impedance spectroscopy and NMR spectroscopy. Sensors and Actuators, B: Chemical, 281, 44–52. https://doi.org/10.1016/j.snb.2018.10.069
- Mayers, J. J., Flynn, K. J., Shields, R. J. (2013). Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresource Technology, 148, 215–220. https://doi.org/10.1016/j.biortech.2013.08.133
- Feng, G. D., Zhang, F., Cheng, L. -H., Xu, X. -H., Zhang, L., Chen, H. -L. (2013). Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresource Technology, 128, 107–112. https://doi.org/10.1016/j.biortech.2012.09.123
- Czamara, K., Majzner, K., Pacia, M. Z., Kochan, K., Kaczor, A. A., Baranska, M. (2015). Raman spectroscopy of lipids: A review. Journal of Raman Spectroscopy, 46(1), 4–20. https://doi.org/10.1002/jrs.4607
- Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A., Singh, S. (2011). In vivo lipidomics using single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3809–3814. https://doi.org/10.1073/pnas.1009043108
- Sharma, S. K., Nelson, D. R., Abdrabu, R., Khraiwesh, B., Jijakli, K., Arnoux, M. et al. (2015). An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnology for Biofuels and Bioproducts, 8, Article 164. https://doi.org/10.1186/s13068-015-0349-1
- Shao, Y., Fang, H., Zhou, H., Wang, Q., Zhu, Y., He, Y. (2017). Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy. Biotechnology for Biofuels and Bioproducts, 10(1), Article 300. https://doi.org/10.1186/S13068-017-0977-8
- Bruñas Gómez, I., Casale, M., Barreno, E., Catalá, M. (2022). Near-infrared metabolomic fingerprinting study of lichen thalli and phycobionts in culture: Aquaphotomics of Trebouxia lynnae dehydration. Microorganisms, 10(12), Article 2444. https://doi.org/10.3390/microorganisms10122444
- Beć, K. B., Grabska, J., Huck, C. W. (2020). Near-infrared spectroscopy in bioapplications. Molecules, 25(12), Article 2948. https://doi.org/10.3390/molecules25122948
- Podevin, M., Fotidis, I. A., Angelidaki, I. (2018). Microalgal process-monitoring based on high-selectivity spectroscopy tools: Status and future perspectives. Critical Reviews in Biotechnology, 38(5), 704–718. https://doi.org/10.1080/07388551.2017.1398132
- Cheng, Y.-S., Zheng, Y., Labavitch, J.M., VanderGheynst, J.S. (2011). Rapid quantification of total lipids using a colorimetric method in green microalgae. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0
- Khozin-Goldberg, I., Iskandarov, U., Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91(4), 905–915. https://doi.org/10.1007/s00253-011-3441-x
- Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
- Lete, M. G., Tripathi, A., Chandran, V., Bankaitis, V. A., McDermott, M. I. (2020). Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Advances in Biological Regulation, 78, Article 100740. https://doi.org/10.1016/j.jbior.2020.100740
- Wagner, H., Jungandreas, A., Fanesi, A., Wilhelm, C. (2014). Surveillance of C-allocation in microalgal cells. Metabolites, 4(2), 453-464. https://doi.org/10.3390/metabo4020453
- Han, Y., Wen, Q., Chen, Z., Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950. https://doi.org/10.1016/j.egypro.2011.10.124
Дополнительные файлы
