Methods for quantitative determination of microalgal lipid and fatty acids content

Cover Page

Cite item

Full Text

Abstract

Microalgae represent a promising feedstock for sustainable biofuel production and high-value lipid-based bioproducts due to their high lipid productivity and rapid growth rates. Accurate and reproducible lipid quantification is essential for strain selection, process optimization, and industrial scaling. This review presents a comprehensive and critical evaluation of contemporary lipid quantification methods applied to microalgae. The methodologies are categorized into screening, quantitative, and profiling approaches, encompassing techniques such as solvent extraction, in situ and direct transesterification, colorimetric assays, spectroscopic tools (NIR, FTIR), and chromatographic techniques (GC, LC–MS/MS). Each method is evaluated across multiple performance axes, including analytical accuracy, throughput, requirement to the sample, technical complexity, and standardization potential. Results are synthesized using the comparative tables. While high-throughput screening tools (e. g., Nile Red, SPV) offer speed and easiness of using, they exhibit limitations in accuracy and reproducibility. Quantitative methods such as acid-catalyzed in situ transesterification coupled with gas chromatography demonstrate a strong balance between precision and scalability. Profiling methods, including LC–MS/MS, provide the highest molecular resolution but are cost- and labor-intensive. The review highlights the need for methodological harmonization and discusses the trade-offs associated with analytical choices in research and industry. Practical recommendations are proposed for selecting the appropriate techniques depending on application context — from early-stage screening to advanced lipidomic profiling.

About the authors

I. V. Morshchinin

ITMO University

Author for correspondence.
Email: keshanowak@gmail.com
49, lit. A, Kronverksky pr., St. Petersburg, 197101

References

  1. Nguyen, H. T. D., Ramli, A., Kee, L. M. (2017). A review on methods used in analysis of microalgae lipid composition. Journal of the Japan Institute of Energy 96(12), 532–537. https://doi.org/10.3775/jie.96.532
  2. Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A. et al. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 384, Article 132236. https://doi.org/10.1016/j.foodchem.2022.132236
  3. Yao, L., Gerde, J. A., Lee, S. L., Wang, T., Harrata, K. A. (2015). Microalgae lipid characterization. Journal of Agricultural and Food Chemistry, 63(6), 1773–1787. https://doi.org/10.1021/jf5050603
  4. Challagulla, V., Nayar, S., Walsh, K., Fabbro, L. (2017). Advances in techniques for assessment of microalgal lipids. Critical Reviews in Biotechnology, 37(5), 566–578. https://doi.org/10.1080/07388551.2016.1206058
  5. Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
  6. Morales, M., Aflalo, C., Bernard, O. (2021). Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass and Bioenergy, 150, Article 106108. https://doi.org/10.1016/j.biombioe.2021.106108
  7. Byreddy, A., Gupta, A., Barrow, C., Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002
  8. Yang, M., Fan, Y., Wu, P.-C., Chu, Y.-D., Shen, P. — L., Xue, S. et al. (2017). An extended approach to quantify triacylglycerol in microalgae by characteristic fatty acids. Frontiers in Plant Science, 8, Article 1949. https://doi.org/10.3389/fpls.2017.01949
  9. Blanco-Llamero, C., García-García, P., Señoráns, F. J. (2024). Efficient green extraction of nutraceutical compounds from nannochloropsis gaditana: A comparative electrospray ionization LC–MS and GC–MS analysis for lipid profiling. Foods, 13(24), Article 4117. https://doi.org/10.3390/foods13244117
  10. Folch, J., Lees, M., Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  11. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. et al. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077
  12. Elsey, D., Jameson, D., Raleigh, B., Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68(3), 639–642. https://doi.org/10.1016/j.mimet.2006.11.008
  13. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O. et al. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels, 8(1), Article 42. https://doi.org/10.1186/s13068-015-0220-4
  14. Wahlen, B.D., Willis, R.M., Seefeldt, L.C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102(3), 2724–2730. http://dx.doi.org/10.1016/j.biortech.2010.11.026
  15. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., Wijffels, R. H. (2013). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226. https://doi.org/10.1016/j.biortech.2012.08.003
  16. Meng, Y., Yao, C., Xue, S., Yang, H. (2014). Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresource Technology, 151, 347–354. https://doi.org/10.1016/j.biortech.2013.10.064
  17. Dean, A. P., Sigee, D. C., Estrada, B., Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101(12), 4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065
  18. Iverson, S. J., Lang, S. L., Cooper, M. H. (2001). Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283–1287. https://doi.org/10.1007/s11745-001-0843-0
  19. Saini, R. K., Prasad, P., Shang, X., Keum, Y. -S. (2021). Advances in lipid extraction methods — A review. International Journal of Molecular Sciences, 22(24), Article 13643. https://doi.org/10.3390/ijms222413643
  20. Lewis, T., Nichols, P. D., McMeekin, T. A. (2000). Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods, 43(2), 107–116. https://doi.org/10.1016/s0167-7012(00)00217-7
  21. Halim, R., Danquah, M. K., Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001
  22. Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, 2018, Article 1503126. https://doi.org/10.1155/2018/1503126
  23. Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1, Supplement), S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  24. Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1), 41–47. https://doi.org/10.1016/j.mimet.2009.01.001
  25. Cooper, M. S., Hardin, W. R., Petersen, T. W., Cattolico, R. A. (2010). Visualizing “green oil” in live algal cells. Journal of Bioscience and Bioengineering, 109(2), 198–201. https://doi.org/10.1016/j.jbiosc.2009.08.004
  26. Brennan, L., Fernández, A.B., Mostaert, A. S., Owende, P. (2012). Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. Journal of Microbiological Methods, 90(2), 137–143. https://doi.org/10.1016/j.mimet.2012.03.020
  27. Khozin-Goldberg, I., Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696–701. https://doi.org/10.1016/j.phytochem.2006.01.010
  28. Guschina, I. A., Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160–186. https://doi.org/10.1016/j.plipres.2006.01.001
  29. Triebl, A., Trötzmüller, M., Hartler, J., Stojakovic, T., Köfeler, H. C. (2017). Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. Journal of Chromatography B, 1053, 72–80. https://doi.org/10.1016/j.jchromb.2017.03.027
  30. Li-Beisson, Y., Thelen, J. J., Fedosejevs, E., Harwood, J. L. (2019). The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 74, 31–68. https://doi.org/10.1016/j.plipres.2019.01.003
  31. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 160, 393–400. https://doi.org/10.1016/j.foodchem.2014.03.087
  32. Pääkkönen, S., Pölönen, I., Calderini, M., Yli-Tuomola, A., Ruokolainen, V., Vihinen-Ranta, M. et al. (2025). Lipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging. Journal of Applied Phycology, 37(1), 205–219. https://doi.org/10.1007/s10811-024-03397-6
  33. Shao, Y., Gu, W., Qiu, Y. A., Wang, S., Peng, Y., Zhu, Y. M. et al. (2020). Lipids monitoring in Scenedesmus obliquus based on terahertz technology. Biotechnology for Biofuels, 13(1), Article 161. https://doi.org/10.1186/s13068-020-01801-0
  34. Kiyani, D. A., Maryam, S., Amina, S. J., Ahmad, A., Chattha, M. W. A., Janjua, H. A. (2023). Lipid extraction and analysis of microalgae strain pectinodesmus PHM3 for biodiesel production. BMC Biotechnology, 23(1), Article 20. https://doi.org/10.1186/s12896-023-00784-8
  35. Bouillaud, D., Drouin, D., Charrier, B., Jacquemmoz, C., Farjon, J., Giraudeau, P. et al. (2020). Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for microalgae cultivated in photobioreactors. Process Biochemistry, 93, 63–68. https://doi.org/10.1016/j.procbio.2020.03.016
  36. Bouillaud, D., Heredia, V., Castaing-Cordier, T., Drouin, D., Charrier, B., Gonçalves, O. et al. (2019). Benchtop flow NMR spectroscopy as an online device for the in vivo monitoring of lipid accumulation in microalgae. Algal Research, 43, Article 101624. https://doi.org/10.1016/j.algal.2019.101624
  37. Cheng, F., Cui, Z., Chen, L., Jarvis, J., Paz, N., Schaub, T. et al. (2017). Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry. Applied Energy, 206, 278–292. https://doi.org/10.1016/j.apenergy.2017.08.105
  38. Harini, A. B., Sarangi, N. V., Nisha, N., Rajkumar, R. (2023). Cultivation of marine diatom, Amphora sp. in municipal wastewater for enhancing lipids toward sustainable biofuel production. South African Journal of Botany, 155, 288–297. https://doi.org/10.1016/j.sajb.2023.02.007
  39. Akonjuen, B. M., Onuh, J. O., Aryee, A. N. A. (2023). Bioactive fatty acids from non-conventional lipid sources and their potential application in functional food development. Food Science and Nutrition, 11(10), 5689–5700. https://doi.org/10.1002/fsn3.3521
  40. Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Nanda, M. (2020). Impact of glyphosate herbicide stress on metabolic growth and lipid inducement in Chlorella sorokiniana UUIND6 for biodiesel production. Algal Research, 51, Article 102071. https://doi.org/10.1016/j.algal.2020.102071
  41. Martínez-Bisbal, M. C., Mestre, N. C., Martínez-Máñez, R., Bauzá, J., Fillol, M. A. (2019). Microalgae degradation follow up by voltammetric electronic tongue, impedance spectroscopy and NMR spectroscopy. Sensors and Actuators, B: Chemical, 281, 44–52. https://doi.org/10.1016/j.snb.2018.10.069
  42. Mayers, J. J., Flynn, K. J., Shields, R. J. (2013). Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresource Technology, 148, 215–220. https://doi.org/10.1016/j.biortech.2013.08.133
  43. Feng, G. D., Zhang, F., Cheng, L. -H., Xu, X. -H., Zhang, L., Chen, H. -L. (2013). Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresource Technology, 128, 107–112. https://doi.org/10.1016/j.biortech.2012.09.123
  44. Czamara, K., Majzner, K., Pacia, M. Z., Kochan, K., Kaczor, A. A., Baranska, M. (2015). Raman spectroscopy of lipids: A review. Journal of Raman Spectroscopy, 46(1), 4–20. https://doi.org/10.1002/jrs.4607
  45. Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A., Singh, S. (2011). In vivo lipidomics using single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3809–3814. https://doi.org/10.1073/pnas.1009043108
  46. Sharma, S. K., Nelson, D. R., Abdrabu, R., Khraiwesh, B., Jijakli, K., Arnoux, M. et al. (2015). An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnology for Biofuels and Bioproducts, 8, Article 164. https://doi.org/10.1186/s13068-015-0349-1
  47. Shao, Y., Fang, H., Zhou, H., Wang, Q., Zhu, Y., He, Y. (2017). Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy. Biotechnology for Biofuels and Bioproducts, 10(1), Article 300. https://doi.org/10.1186/S13068-017-0977-8
  48. Bruñas Gómez, I., Casale, M., Barreno, E., Catalá, M. (2022). Near-infrared metabolomic fingerprinting study of lichen thalli and phycobionts in culture: Aquaphotomics of Trebouxia lynnae dehydration. Microorganisms, 10(12), Article 2444. https://doi.org/10.3390/microorganisms10122444
  49. Beć, K. B., Grabska, J., Huck, C. W. (2020). Near-infrared spectroscopy in bioapplications. Molecules, 25(12), Article 2948. https://doi.org/10.3390/molecules25122948
  50. Podevin, M., Fotidis, I. A., Angelidaki, I. (2018). Microalgal process-monitoring based on high-selectivity spectroscopy tools: Status and future perspectives. Critical Reviews in Biotechnology, 38(5), 704–718. https://doi.org/10.1080/07388551.2017.1398132
  51. Cheng, Y.-S., Zheng, Y., Labavitch, J.M., VanderGheynst, J.S. (2011). Rapid quantification of total lipids using a colorimetric method in green microalgae. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0
  52. Khozin-Goldberg, I., Iskandarov, U., Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91(4), 905–915. https://doi.org/10.1007/s00253-011-3441-x
  53. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  54. Lete, M. G., Tripathi, A., Chandran, V., Bankaitis, V. A., McDermott, M. I. (2020). Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Advances in Biological Regulation, 78, Article 100740. https://doi.org/10.1016/j.jbior.2020.100740
  55. Wagner, H., Jungandreas, A., Fanesi, A., Wilhelm, C. (2014). Surveillance of C-allocation in microalgal cells. Metabolites, 4(2), 453-464. https://doi.org/10.3390/metabo4020453
  56. Han, Y., Wen, Q., Chen, Z., Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950. https://doi.org/10.1016/j.egypro.2011.10.124

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Piŝevye sistemy

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».