Modern biological methods of processing plant raw materials used to increase its storage capacity
- Авторлар: Posokina N.E.1, Zakharova A.I.1
-
Мекемелер:
- All-Russian Scientific Research Institute of Preservation Technology
- Шығарылым: Том 7, № 2 (2024)
- Беттер: 298-304
- Бөлім: Articles
- URL: https://journals.rcsi.science/2618-9771/article/view/311307
- DOI: https://doi.org/10.21323/2618-9771-2024-7-2-298-304
- ID: 311307
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
N. Posokina
All-Russian Scientific Research Institute of Preservation Technology
Email: a.zaharova@fncps.ru
78, Shkol'naya Str., Vidnoe, 142703, Moscow region
A. Zakharova
All-Russian Scientific Research Institute of Preservation Technology
Email: a.zaharova@fncps.ru
78, Shkol'naya Str., Vidnoe, 142703, Moscow region
Әдебиет тізімі
- Paparella, A., Maggio, F. (2023). Detection and control of foodborne pathogens. Foods, 12(19), Article 3521. https://doi.org/10.3390/foods12193521
- Chung, K. M., Liau, X. L., Tang, S. S. (2023). Bacteriophages and their host range in multidrug-resistant bacterial disease treatment. Pharmaceuticals, 16 (10), Article 1467. https://doi.org/10.3390/ph16101467
- Vaca, J., Ortiz, A., Sansinenea, E. (2022). A study of bacteriocin like substances comparison produced by different species of Bacillus related to B. cereus group with specific antibacterial activity against foodborne pathogens. Archives of Microbiology, 3, 205(1), Article 13. https://doi.org/10.1007/s00203-022-03356-0
- Jamal, M., Bukhari, S., Andleeb, S., Ali, M., Raza, S., Nawaz, M. et al. (2018). Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. Journal of Basic Microbiology, 59(2), 123-133. https://doi.org/10.1002/jobm.201800412
- Petrovic Fabijan, A., Iredell, J., Danis-Wlodarczyk, K., Kebriaei, R., Abedon S. (2023). Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLOS Biology, 21(5), Article e3002119. https://doi.org/10.1371/journal.pbio.3002119
- Zuppi, M., Hendrickson, H. L., O'Sullivan, J. M., Vatanen, T. (2022). Phages in the gut ecosystem. Frontiers in Cellular and Infection Microbiology, 11, Article 822562 https://doi.org/10.3389/fcimb.2021.822562
- Mani, I. (2023). Phage and phage cocktails formulations. Chapter in a book: Progress in Molecular Biology and Translational Science. Elsevier Inc., 2023. https://doi.org/10.1016/bs.pmbts.2023.04.007
- Gordillo Altamirano, F. L., Barr, J. J. (2019). Phage therapy in the Postantibiotic Era. Clinical Microbiology Reviews, 32(2), Article e00066-18. https://doi.org/10.1128/CMR.00066-18
- Dennehy, J. J., Abedon, S. T. (2020). Adsorption: Phage Acquisition of Bacteria. Chapter in a book: Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-41986-2_2
- Amjad, K. (2020). Phage-bacteria interaction and prophage sequences in bacterial genomes. Electronic Thesis and Dissertation Repository. The University of Western Ontario. https://ir.lib.uwo.ca/etd/6957
- Aframian, N., Bendori, S. O., Hen, S., Guler, P., Stokar-Avihail, A., Manor, E. et al. (2021). Dormant phages communicate to control exit from lysogeny. bioRxiv, Preprint https://doi.org/10.1101/2021.09.20.460909
- Schneider, C. L. (2017). Bacteriophage-mediated horizontal gene transfer: Transduction. Chapter in a book: Bacteriophages. Springer, Cham. 2020. https://doi.org/10.1007/978-3-319-40598-8_4-1
- Endersen, L., Coffey A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36, 1-8. https://doi.org/10.1016/j.cofs.2020.10.006
- Liu, A., Liu, Y., Peng, L., Cai, X., Shen, L., Duan, M. et al. (2020). Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on different foods. LWT, 118, Article 108791. https://doi.org/10.1016/j.lwt.2019.108791
- Liu, N., Lewis, C., Zheng, W., Fu, Z. Q. (2020). Phage cocktail therapy: Multiple ways to suppress pathogenicity. Trends in Plant Science, 25(4), 315-317. https://doi.org/10.1016/j.tplants.2020.01.013
- Wójcicki, M., Świder, O., Gientka, I., Błażejak, S., Średnicka, P., Shymialevich, D. et al. (2023). Effectiveness of a phage cocktail as a potential biocontrol agent against saprophytic bacteria in ready-to-eat plant-based food. Viruses, 15, Article 172. https://doi.org/10.3390/v15010172
- Duc, H. M., Zhang, Y., Hoang, S. M., Masuda, Y., Honjoh, K.-I., Miyamoto, T. (2023). The use of phage cocktail and various antibacterial agents in combination to prevent the emergence of phage resistance. Antibiotics, 12(6), Article 1077. https://doi.org/10.3390/antibiotics12061077
- Wong, C. W. Y., Delaquis, P., Goodridge, L., Lévesque R. C., Fong, K., Wang, S. (2020). Inactivation of Salmonella enterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail. Critical Reviews in Food Science and Nutrition, 2, 25-32. https://doi.org/10.1016/j.crfs.2019.11.004
- Toprak, Z. T., Sanlibaba, P. (2020). Application of Phage for Biocontrol of Salmonella Species in Food Systems. Turkish Journal of Agriculture — Food Science and Technology, 8(10), 2214-2221. https://doi.org/10.24925/turjaf.v8i10.2214-2221.3689
- Hong, Y.-P., Cho, J. W., Lee, J. H., Yang, R.-Y. (2015). Combining of bacteriophage and G. asaii application to reduce l. monocytogenes on fresh-cut melon under low temperature and packing with functional film. Journal of Food and Nutrition Sciences, 3(1-2), 79-83. https://doi.org/10.11648/j.jfns.s.2015030102.25
- Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D. et al. (2022). Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10, Article 1005918. https://doi.org/10.3389/fbioe.2022.1005918
- Cleveland, J., Montville, T. J., Nes, I. F., Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
- Anjana, P., Tiwari, S. K. (2022). Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Frontiers in Cellular and Infection Microbiology, 12, Article 851140. https://doi.org/10.3389/fcimb.2022.851140
- Taye, Y., Degu, T., Fesseha, H., Mathewos, M. (2021). Isolation and identification of lactic acid bacteria from cow milk and milk products. The Scientific World Journal, Article 4697445. https://doi.org/10.1155/2021/4697445
- Barreto Pinilla, C. M., Brandelli, A., Ataide Isaia, H. (2024). Probiotic Potential and Application of Indigenous Non-Starter Lactic Acid Bacteria in Ripened Short-Aged Cheese. Current Microbiology, 81, Article 202. https://doi.org/10.1007/s00284-024-03729-2
- Mekala, P. N., Ansari, R. M. H. (2023). Biotechnological potential of lactic acid bacteria derived bacteriocins in sustainable food preservation. World Journal of Biology Pharmacy and Health Sciences, 14(3), 24-35. https://doi.org/10.30574/wjbphs.2023.14.3.0245
- Bintsis, T. (2018). Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4(4), 665-684. https://doi.org/10.3934/microbiol.2018.4.665
- Contessa, C. R., de Souza, N. B., Gongalo, G. B., de Moura, C. M., da Rosa, G. S., Moraes, C. C. (2021). Development of active packaging based on agar-agar incorporated with bacteriocin of Lactobacillus sakei. Biomolecules, 11(12), Article 1869. https://doi.org/10.3390/biom11121869
- Strack, L., Carli, R. C., da Silva, R. V., Sartor, K. B., Colla, L. M., Reinehr, C. O. (2020) Food biopreservation using antimicrobials produced by lactic acid bacteria. Research Society and Development, 9(8), Article e998986666. https://doi.org/10.33448/rsd-v9i8.6666
- Perez, R. H., Zendo, T., Sonomoto, K. (2022). Multiple bacteriocin production in lactic acid bacteria. Journal of Bioscience and Bioengineering, 134(4), 277-287. https://doi.org/10.1016/j.jbiosc.2022.07.007
- Tang, H., Huang, W., Yao, Y.-F. (2023). The metabolites of lactic acid bacteria: Classification, biosynthesis and modulation of gut microbiota. Microbial Cell, 10(3), 49-62. https://doi.org/10.15698/mic2023.03.792
- Alameri, F., Tarique, M., Osaili, T., Obaid R., Abdalla, A., Masad R. et al. (2022). Lactic acid bacteria isolated from fresh vegetable products: Potential probiotic and postbiotic characteristics including immunomodulatory effects. Microorganisms, 10(2), Article 389. https://doi.org/10.3390/microorganisms10020389
- Szutowska, J., Gwiazdowska, D. (2021). Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Archives of Microbiology, 203(3), 975-988. https://doi.org/10.1007/s00203-020-02095-4
- Parlindungan, E., Lugli, G., Ventura, M., van Sinderen, D., Mahony, J. (2021). Lactic acid bacteria diversity and characterization of probiotic candidates in fermented meats. Foods, 10(7), Article 1519. https://doi.org/10.3390/foods10071519
- Małaczewska, J., Kaczorek-Łukowska, E (2021). Nisin — a lantibiotic with immunomodulatory properties: A review. Peptides, 137, Article 170479. https://doi.org/10.1016/j.peptides.2020.170479
- Wang, X., Gu, Q., Breukink, E. (2020). Non-lipid II targeting lantibiotics. Biochimica et Biophysica Acta (BBA) — Biomembranes, 1862(8), Article 183244. https://doi.org/10.1016/j.bbamem.2020.183244
- Negash, A. W., Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, Article 4374891. https://doi.org/10.1155/2020/4374891
- Antoshina, D. V., Balandin, S. V., Ovchinnikova, T. V. (2022). Structural features, mechanisms of action, and prospects for practical application of class II bacteriocins. Biochemistry (Moscow), 87(11), 1387-1403. https://doi.org/10.1134/S0006297922110165
- Timothy, B., Iliyasu, A. H., Anvikar, A. R. (2021). Bacteriocins of lactic acid bacteria and their industrial application. Current Topics in Lactic Acid Bacteria and Probiotics, 7(1), 1-13. https://doi.org/10.35732/ctlabp.2021.7.1.1
- Angelescu, I.-R., Grosu-Tudor, S.-S., Cojoc L.-R., Maria, G.-M., Zamfir, M. (2021). Isolation, characterization, and applicability of Helveticin 34.9, a class iii bacteriocin produced by Lactobacillus Helveticus 34.9. Research Square, Preprint. https://doi.org/10.21203/rs.3.rs-808205/v1
- Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171-177. https://doi.org/10.1016/j.micpath.2019.01.002
- Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M. et al. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), Article e24093. https://doi.org/10.1002/jcla.24093
- Laukova, A., Pogany Simonova, M., Fockova, V., Kolosta, M., Tomaska, M., Dvoroznakova, E. (2020). Susceptibility to bacteriocins in biofilm-forming, variable staphylococci isolated from local slovak ewes' milk lump cheeses. Foods, 22, 9(9), Article 1335. https://doi.org/10.3390/foods9091335
- Simons, A., Alhanout, K., Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), Article 639. https://doi.org/10.3390/microorganisms8050639
- Huang, F., Teng, K., Liu, Y., Cao, Y., Wang, T., Ma, C. et al. (2021). Bacteriocins: Potential for human health. Oxidative Medicine and Cellular Longevity, Article 5518825. https://doi.org/10.1155/2021/5518825
- Veettil, V. N., Chitra V. A. (2022). Optimization of bacteriocin production by Lactobacillus plantarum using Response Surface Methodology. Cellular and Molecular Biology, 68(6), 105-110. https://doi.org/10.14715/cmb/2022.68.6.17.
- Ryan, A., Patel, P., O'Connor, P. M., Ross, R. P., Hill, C., Hudson, S. P. (2021). Pharmaceutical design of a delivery system for the bacteriocin lacticin 3147. Drug Delivery and Translational Research, 11(4), 1735-1751. https://doi.org/10.1007/s13346-021-00984-9
- Ross, J. N., Fields, F. R., Kalwajtys, V. R., Gonzalez, A. J., O'Connor, S., Zhang, A. et al. (2020). Synthetic peptide libraries designed from a minimal Alpha-helical domain of AS-48-Bacteriocin homologs exhibit potent antibacterial activity. Frontiers In Microbiology, 11, Article 589666. https://doi.org/10.3389/fmicb.2020.589666
- Wang, M. (2023). In Vitro fermentation. Fermentation, 9(2), Article 86. https://doi.org/10.3390/fermentation9020086
- Steier, V., Prigolovkin, L., Reiter, A., Neddermann, T., Wiechert, W., Reich, S. J. et al. (2024). Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei. Microbial Cell Factories, 23(1), Article 74. https://doi.org/10.1186/s12934-024-02349-6
- Abedin, M. M., Chourasia, R., Phukon, L. C., Sarkar, P., Ray, R. C., Singh, S. P. et al. (2023). Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Critical Reviews in Food Science and Nutrition, 5, 1-19. https://doi.org/10.1080/10408398.2023.2227896
- Guo, L., Stoffels, K., Broos, J., Kuipers, O. P. (2024). Engineering hybrid lantibiotics yields the highly stable and bacteriocidal peptide cerocin V. Microbiology Research, 282, Article 127640. https://doi.org/10.1016/j.micres.2024.127640
- Fernandes, P. (2018). Enzymatic processing in the food industry. Chapter in a book: Reference Module in Food Science. Elzevier, 2018. https://doi.org/10.1016/B978-0-08-100596-5.22341-X
- Heirangkhongjam, M. D., Agarwal, K., Agarwal, A., Jaiswal N. (2022). Role of enzymes in fruit and vegetable processing industries: Effect on quality, processing method, and application. Chapter in a book: Novel Food Grade Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-19-1288-7_3
- Motta, J. F. G., Freitas B. C. B. de, Almeida A. F. de, Martins G. A. de S., Borges, S. V. (2023). Use of enzymes in the food industry: A review. Article Food Science and Technology, 43, Article e106222. https://doi.org/10.1590/fst.106222
- Shouket, S., Khurshid, S., Khan, J., Batool, R., Sarwar, A., Aziz, T. et al. (2023). Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Research International, 169, Article 112940. https://doi.org/10.1016/j.foodres.2023.112940
- Meli, V. S., Ghosh, S., Prabha, T. N., Chakraborty, N., Chakraborty, S., Datta, A. (2010). Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. PNAS, 107(6), 2413-2418. https://doi.org/10.1073/pnas.0909329107
- Посокина, Н. Е., Захарова, А. И. (2023). Современные нетермические способы обработки растительного сырья, применяемые для увеличения его хранимоспособности. Пищевые системы, 6(1), 4-10. https://doi.org/10.21323/2618-9771-2023-6-1-4-10
- Mitelut, A. C., Popa, E. E., Draghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O. C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821
- Díaz-Montes, E., Castro-Muñoz, R. (2021). Edible films coatings as food-quality preservers: An overview. Foods, 26, 10(2), Article 249. https://doi.org/10.3390/foods10020249
- Martins, V. F. R., Pintado, M. E., Morais, R. M. S. C., Morais, A. M. M. B. (2024). Recent highlights in sustainable bio-based edible films and coatings for fruit and vegetable applications. Foods, 13(2), Article 318. https://doi.org/10.3390/foods13020318
- Matloob, A., Ayub, H., Mohsin, M., Ambreen, S., Khan, F. A., Oranab, S. et al. (2023). A review on edible coatings and films: Advances, composition, production methods, and safety concerns. ACS Omega, 8(32), 28932-28944. https://doi.org/10.1021/acsomega.3c03459
- Miteluț, A. C., Popa, E. E., Drăghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O.-C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821
- Tiamiyu, Q. O., Adebayo, S. E., Yusuf, A. A. (2023). Gum Arabic edible coating and its application in preservation of fresh fruits and vegetables: A review. Food Chemistry Advances, 2, Article 100251. https://doi.org/10.1016/j.focha.2023.100251
- Pinto, L. Tapia-Rodríguez, M. R. Baruzzi, F. Ayala-Zavala, J. F. (2023). Plant antimicrobials for food quality and safety: Recent views and future challenges. Foods, 12(12), Article 2315. https://doi.org/10.3390/foods12122315
- Biswas, O., Kandasamy, P., Nanda, P. K., Biswas, S., Lorenzo, J. M., Das, A. et al. (2023). Phytochemicals as natural additives for quality preservation and improvement of muscle foods: A focus on fish and fish products. Food Materials Research, 3, Article 5. https://doi.org/10.48130/FMR-2023-0005
- Galal, H. (2021). Impact of post-harvest treatments on the antioxidant content of fruits and vegetables. Egyptian Journal of Horticulture, 49 (1), 25-33. https://doi.org/10.21608/EJOH.2021.96104.1184
- Albuquerque, P. M., Azevedo, S. G., de Andrade, C. P., D’Ambros, N. C. d. S., Pérez, M. T. M., Manzato, L. (2022). Biotechnological applications of nanoencapsulated essential oils: A review. Polymers, 14(24), Article 5495. https://doi.org/10.3390/polym14245495
- Wan, J., Wilcock, A., Coventry, M. J. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84(2), 152-158. https://doi.org/10.1046/j.1365-2672.1998.00338.x
- Kim, T., Kim, J.-H., Oh, S.-W. (2021). Grapefruit seed extract as a natural food antimicrobial: A review. Food and Bioprocess Technology, 14(4), 626-633. https://doi.org/10.1007/s11947-021-02610-5
- Awad, A. M., Kumar, P., Ismail-Fitry, M. R., Jusoh, S., Ab Aziz, M. F., Sazili, A. Q. (2021). Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants, 10(9), Article 1465. https://doi.org/10.3390/antiox10091465
Қосымша файлдар
