Laser irradiation and pomegranate peel for preservation of the strawberry quality

Cover Page

Cite item

Full Text

Abstract

The present study is aimed to explore the influence of laser irradiation and coating with chitosan and pomegranate peel extract on the physico-chemical properties, weight loss, firmness, functional, microbiological, color, and sensory characteristics of strawberry for fifteen days of cold storage. Four treatments of strawberry were conducted with laser irradiation for 6 min. The second, third, and fourth groups were coated with chitosan, pomegranate peel extract (PPE), and mixture of chitosan and PPE at ratio 1:1. Compared to untreated strawberries, the exposure to laser radiation decreased the weight loss of strawberries by 43.44%. Also, the laser irradiation reduced the negative effect of storage on the total phenolic content, anthocyanin, ascorbic acid, and antioxidant ability of strawberry. The exposure of strawberry to laser irradiation reduced the counts of fungi and psychrotrophic bacteria and provided the positive effect on the color and sensory attributes. The coating with PPE and chitosan enhanced the positive effect of laser irradiation on the functional and quality properties of strawberry during its cold storage. It can be concluded that laser irradiation and coating with PPE may be applied as novel techniques for the preservation of strawberry properties during its storage period.

About the authors

N. Elsayed

Cairo University

Author for correspondence.
Email: hany.ahmed@agr.cu.edu.eg
Nesren Elsayed is affiliated with the Food Science Department at Cairo University, Giza, Egypt. 1, Gamaa Street, Giza, 12613, Egypt

H. Elkashef

Cairo University

Email: hany.ahmed@agr.cu.edu.eg
1, Gamaa Street, Giza, 12613, Egypt

Sh. R. Ali

Cairo University

Email: hany.ahmed@agr.cu.edu.eg
1 Gamaa Street, 12613, Giza, Egypt

References

  1. Sami, R., Khojah, E., Elhakem, A., Benajiba, N., Helal, M., Alhuthal, N. et al. (2021). Performance study of Nano/SiO2 films and the antimicrobial application on cantaloupe fruit shelf-life. Applied Sciences, 11(9), 3879–3891. https://doi.org/10.3390/app11093879
  2. Kumar, N., Pratibha, Trajkovska Petkoska, A., Khojah, E., Sami, R., Al-Mushhin, A. A. M. (2021). Chitosan edible films enhanced with pomegranate peel extract: Study on physical, biological, thermal, and barrier properties. Materials, 14(12), 3305–3322. https://doi.org/10.3390/ma14123305
  3. Piekarska, K., Sikora, M., Owczarek, M., Jóźwik-Pruska, J., Wiśniewska-Wrona, M. (2023). Chitin and chitosan as polymers of the future-obtaining, modification, life cycle assessment and main directions of application. Polymers, 15(4), Article 793. https://doi.org/10.3390/polym15040793
  4. Gupta, N., Poddar, K., Sarkar, D., Kumari, N., Padhan, B., Sarkar, A. (2019). Fruit waste management by pigment production and utilization of residual as bioadsorbent. Journal of Environmental Management, 244, 138–143. https://doi.org/10.1016/j.jenvman.2019.05.055
  5. Arun, K. B., Madhavan, A., Sindhu, R., Binod, P., Pandey, A., R, R., Sirohi, R. (2020). Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops and Products, 154, Article 112621. https://doi.org/10.1016/j.indcrop.2020.112621
  6. Akhtar, S., Ismail, T., Fraternale, D., Sestili. P. (2015). Pomegranate peel and peel extracts: Chemistry and food features. Food Chemistry, 174, 417–425. https://doi.org/10.1016/j.foodchem.2014.11.035
  7. Pirzadeh, M., Caporaso, N., Rauf, A., Shariati, M. A., Yessimbekov, Z., Khan, M. U. et al. (2020). Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Critical Reviews in Food Science and Nutrition, 61(6), 982–999. https://doi.org/10.1080/10408398.2020.1749825
  8. Pandiselvam, R., Mayookha, V. P., Kothakota, A., Ramesh, S. V., Thirumdas, R., Juvvi, P. (2020). Bio-speckle laser technique–a novel nondestructive approach for food quality and safety detection. Trends in Food Science and Technology, 97, 1–13. https://doi.org/10.1016/j.tifs.2019.12.028
  9. Shabir, I., Khan, S., Dar, A. H., Dash, K. K., Shams, R., Altaf, A. et al. (2022). Laser beam technology interventions in processing, packaging, and quality evaluation of foods. Measurement: Food, 8, Article 100062. https://doi.org/10.1016/j.meafoo.2022.100062
  10. Hernández, A. C., Rodríguez, P. C. L., Domínguez-Pacheco, F. A., Hernández, A. A. M., Cruz-Orea, A., Carballo, C. A. (2011). Laser light on the mycoflora content in maize seeds. African Journal of Biotechnology, 10(46), 9280–9288. https://doi.org/10.5897/ajb11.605
  11. Hernandez, A. C., Dominguez, P. A., Cruz, O. A., Ivanov, R., Carballo, C. A., Zepeda, B. R. (2010). Laser in agriculture. International Agrophysics, 24(4), 407–422.
  12. Sandhu, A. K., Miller, M. G., Thangthaeng, N., Scott, T. M., Shukitt-Hale, B., Edirisinghe, I. et al. (2018). Metabolic fate of strawberry polyphenols laser chronic intake in healthy older adults. Food and Function, 9(1), 96–106. https://doi.org/10.1039/C7FO01843F
  13. Miller, K., Feucht, W., Schmid, M. (2019). Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: A brief overview. Nutrients, 11(7), Article 1510. https://doi.org/10.3390/nu11071510
  14. El-Hawary, S. S., Mohammed, R., El-Din, M. E., Hassan, H. M., Ali, Z. Y., Rateb, M. E. et al. (2021). Comparative phytochemical analysis of five Egyptian strawberry cultivars (Fragaria × ananassa Duch.) and antidiabetic potential of Festival and Red Merlin cultivars. RSC Advances, 11(27), 16755–16767. https://doi.org/10.1039/d0ra10748d
  15. Almeida, M.L.B., Moura, C.F.H., Innecco, I., dos Santos, A., de Miranda, F.R. (2015). Postharvest shelf-life and fruit quality of strawberry grown in different cropping systems. African Journal of Agricultural Research, 10(43), 4053–4061. https://doi.org/10.5897/AJAR2015.10239
  16. Hammad, K. S. M., Elsayed, N., Elkashef, H. (2021). Development of a whey protein concentrate/apple pomace extract edible coating for shelf life extension of fresh-cut apple. International Food Research Journal, 28(2), 377–385. http://dx.doi.org/10.47836/ifrj.28.2.19
  17. Zambrano-Zaragoza, M. L., Mercado-Silva, E., Ramirez-Zamorano, P., Cornejo-Villegas, M. A., Gutíerrez-Cortez, E., Quintanar-Guerrero, D. (2013). Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Research International, 51(2), 946–953. https://doi.or/10.1016/j.foodres.2013.02.012
  18. Elsayed, N., Hassan, A. A. M., Abdelaziz, S. M., Abdeldaym, E. A., Darwish, O. S. (2022). Effect of whey protein edible coating incorporated with mango peel extract on postharvest quality, bioactive compounds and shelf life of broccoli. Horticulture, 8(9), Article 770. https://doi.org/10.3390/horticulturae8090770
  19. AOAC. (2000). Official Methods of Analysis. 17th Edition. The Association of Official Analytical Chemists, Gaithersburg, MD, USA, 2000.
  20. Tonutare, T., Moor, U., Szajdak, L. (2014). Strawberry anthocyanin determination by pH differential spectroscopic method — How to get true results? Acta Scientiarum Polonorum Hortorum Cultus, 13(3), 35–47.
  21. APHA. (2004). Standard Methods for the Examination of Dairy Products. 17th Edition. American Public Health Association, Washington, 2004.
  22. Pilon, L., Spricigo, P. C., Miranda, M., de Moura, M. R., Assis, O. B. G., Mattoso, L. H. C. et al. (2015). Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science Technology, 50(2), 440–448. https://doi.org/10.1111/ijfs.12616
  23. Tanada-Palmu, P. S., Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199–208. https://doi.org/10.1016/j.postharvbio.2004.12.003
  24. Hernández-Muñoz, P., Almenar, E., Valle, V. D., Velez, D., Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428–435. https://doi.org/10.1016/j.foodchem.2008.02.020
  25. Ali, L. M., Saleh, S. S., Ahmed, A. E.-R. A. E.-R., Hasan, H. E.-S., Suliman, A. E.-R. E. (2020). Novel postharvest management using laser irradiation to maintain the quality of strawberry. Journal of Food Measurement and Characterization, 14(6), 3615–3624. https://doi.org/10.1007/s11694-020-00600-3
  26. Saeed, M., Azam, M., Ahmad, T., Akhtar, S., Hussain, M., Nasir, S. et al. (2022). Utilization of pomegranate peel extract as antifungal coating agent against Fusarium oxysporum on tomatoes. Journal of Food Processing and Preservation, 46, Article e17157. https://doi.org/10.1111/jfpp.17157
  27. Taha, L. S., Taie, H. A. A., Metwally, S. A., Fathy, H. M. (2014). Effect of laser radiation treatments on in vitro growth behavior, antioxidant activity and chemical constituents of Sequoia sempervirens. Research Journal of Pharmaceutical Biological, 5(4), 1024–1304.
  28. Cordenunsi, B. R., Genovese, M. I., do Nascimento, J. R.O., Hassimotto, N. M.A., dos Santos, R.J., Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chemistry, 91(1), 113–121. https://doi.org/10.1016/j.foodchem.2004.05.054
  29. Pirvu, L. C., Nita, S., Rusu, N., Bazdoaca, C., Neagu, G., Bubueanu, C. et al. (2022). Effects of laser irradiation at 488, 514, 532, 552, 660, and 785 nm on the aqueous extracts of Plantago lanceolata L.: A comparison on chemical content, antioxidant activity and Caco2 viability. Applied Sciences, 12(11), Article 5517. https://doi.org/10.3390/app12115517
  30. Salyaev, R. K., Dudareva, L. V., Lankevich, S. V., Makarenko, S. P., Sumtsova, V. M., Rudikovaskaya, E. G. (2007). Effect of low-intensity laser irradiation on the chemical composition and structure of lipids in wheat tissue culture. Doklady Biological Sciences, 412(1), 87–88. https://doi.org/10.1134/S0012496607010280
  31. Maraei, R. W., Elsawy, K. M. (2017). Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. African Journal of Agricultural Research, 10(1), 80–87. http://dx.doi.org/10.1016/j.jrras.2016.12.004
  32. Al-Zoreky, N. S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology, 134(3), 244–248. https://doi.org/10.1016/j.ijfoodmicro.2009.07.002
  33. Kaderides, K., Mourtzinos, I., Goula, A. M. (2020). Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chemistry, 310, Article 125849. https://doi.org/10.1016/j.foodchem.2019.125849
  34. Cruz-Valenzuela, M. R., Ayala-Soto, R. E., Ayala-Zavala, J. F., Espinoza-Silva, B. A., González-Aguilar, G. A., Martín-Belloso, O. et al. (2022). Pomegranate (Punica granatum L.) peel extracts as antimicrobial and antioxidant additives used in alfalfa sprouts. Foods, 11(17), Article 2588. https://doi.org/10.3390/foods11172588
  35. Opara, L. U., Al-Ani, M. R., Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2(3), 315–321. https://doi.org/10.1007/s11947-008-0095-5
  36. Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., Jiang, Y. (2003). Antioxidant activities of peel and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23(12), 1719–1726. https://doi.org/10.1016/j.nutres.2003.08.005
  37. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254–260. https://doi.org/10.1016/j.foodchem.2005.02.033
  38. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B. et al. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496– 1547. https://doi.org/10.3390/12071496
  39. Zhao, X., Yuan, Z. (2021). Anthocyanins from pomegranate (Punica granatum L.) and their role in antioxidant capacities in vitro. Chemistry and Biodiversity, 18(10), Article e2100399. https://doi.org/10.1002/cbdv.202100399
  40. Darwish, O. S., Ali, M. R., Khojah, E., Samra, B. N., Ramadan, K. M. A., El-Mogy, M. M. (2021). Pre-harvest application of salicylic acid, abscisic acid, and methyl jasmonate conserve bioactive compounds of strawberry fruits during refrigerated storage. Horticulturae, 7(12), Article 568. https://doi.org/10.3390/horticulturae7120568
  41. Azam, M., Saeed, M., Pasha, I., Shahid, M. (2020). A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. Food Bioscience, 37, Article 100679. https://doi.org/10.1016/j.fbio.2020.100679
  42. Nazeam, J. A., Al-Shareef, W. A., Helmy, M. W., El-Haddad, A. E. (2020). Bioassayguided isolation of potential bioactive constituents from pomegranate agrifood by-product. Food Chemistry, 326, Article 126993. https://doi.org/10.1016/j.foodchem.2020.126993
  43. Charalampia, D., Koutelidakis, A. E. (2017). From pomegranate processing by-products to innovative value-added functional ingredients and bio-based products with several applications in food sector. BAOJ Biotechnology, 3(1), Article 025.
  44. El-Mogy, M. M., Ali, M. R., Darwish, O. S., Rogers, H. J. (2019). Impact of salicylic acid, abscisic acid, and methyl jasmonate on postharvest quality and bioactive compounds of cultivated strawberry fruit. Journal of Berry Research, 9(2), 333– 348. https://doi.org/10.3233/JBR180349
  45. Dzhanfezova, T., Barba-Espín, G., Müller, R., Joernsgaard, B., Hegelund, J. N., Madsen, B. et al. (2020). Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria × ananassa Duch) genetic resource collection. Food Bioscience, 36, Article 100620. https://doi.org/10.1016/j.fbio.2020.100620
  46. Jiang, H., Sun, Z., Jia, R., Wang, X., Huang, J. (2016). Effect of chitosan as an antifungal and preservative agent on postharvest blueberry. Journal of Food Quality, 39(5), 516–523. https://doi.org/10.1111/jfq.12211
  47. Alqahtani, N. K., Alnemr, T. M., Ali, S. A. (2023). Effects of pomegranate peel extract and/or lactic acid as natural preservatives on physicochemical, microbiological properties, antioxidant activity, and storage stability of Khalal Barhi date fruits. Foods, 12(6), 1160–1174. https://doi.org/10.3390/foods12061160

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Elsayed N., Elkashef H., Ali S.R.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».