Landscape and climate change in the northern mongolian plateau during the late glacial and holocene (based on the shaamar loess-soil section)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of paleosol and paleogeographic studies of the Shaamar loess-soil section located in the Northern Mongolian Plateau. The main periods of eolian sedimentation and soil formation in the Late Glacial and Holocene are reconstructed. Based on radiocarbon data, it was indicated the longest period of soil formation that took place during the Bølling/Allered interstadial (~15.000–~12.500 years ago). For this time, the most favorable conditions for the chernozem soil formation with the dominance of open steppe landscapes and an arid climatic situation have been reconstructed. The next soil formation period corresponds to the Boreal phase of the early Holocene (~9.500 years ago). At this time, forest-steppe soils were formed, in which signs of textural differentiation and waterlogging processes were revealed. According to the pollen analysis, in addition to grasses, pine and birch pollen is recorded in noticeable quantities. In the Middle Holocene (~8500–~3500 years ago), an increase in aeolian activity is recorded against the background of climate aridization and cooling. At the same time, according to micromorphological data, short-term periods of waterlogging are recorded in both pedosediments and aeolian deposits, which was most likely a result of seasonal permafrost melting. In the late Holocene (the last ~3500 years ago), according to palynological data, a noticeable climate humidification is noted, which led to an expansion of the range of forest vegetation. Pine forests were widely represented in the territory. The data obtained allow a more accurate determination of the age of the main stages of soil formation, which significantly improves the understanding of the patterns of climate change in the north of the Mongolian Plateau at the end of the Last Glaciation and the Holocene.

About the authors

S. N. Timireva

Institute of Geography of the Russian Academy of Sciences

Email: jukon02@mail.ru
Moscow, Russia

O. S. Khokhlova

Institute of Physical-Chemical and Biological Problems of Soil Science of the Russian Academy of Sciences

Pushchino, Moscow Region, Russia

S. A. Sycheva

Institute of Geography of the Russian Academy of Sciences

Moscow, Russia

O. Batkhishig

Institute of Geography and Geoecology of the Mongolian Academy of Sciences

Ulaanbaatar, Mongolia

A. N. Simakova

Geological Institute of the Russian Academy of Sciences

Moscow, Russia

P. I. Kalinin

Institute of Physical-Chemical and Biological Problems of Soil Science of the Russian Academy of Sciences

Pushchino, Moscow Region, Russia

T. Bolormaa

Institute of Geography and Geoecology of the Mongolian Academy of Sciences

Ulaanbaatar, Mongolia

G. Byambaa

Institute of Geography and Geoecology of the Mongolian Academy of Sciences

Ulaanbaatar, Mongolia

Y. M. Kononov

Institute of Geography of the Russian Academy of Sciences

Moscow, Russia

References

  1. An Z. The history and variability of the East Asian paleomonsoon climate. Quat. Sci. Rev., 2000, vol. 19, no. 1–5, pp. 171–187. https://doi.org/10.1016/S0277-3791(99)00060-8
  2. An C.B., Chen F.H., Barton L. Holocene environmental changes in Mongolia: A review. Glob. Planet. Chang., 2008, vol. 63, pp. 283–289. https://doi.org/10.1016/j.gloplacha.2008.03.007
  3. Astakhov V.I. Loessoids and other indications of the northern periglaciation. Geomorfol. Paleogeogr., 2024, vol. 55, no. 2, pp. 5–33. (In Russ.). https://doi.org/10.31857/S2949178924020018
  4. Batjargal Z. Desertification in Mongolia. RALA Report, 1997, vol. 200. pp. 107–113.
  5. Bazarova V.B., Klimin M.A., Kopoteva T.A. Holocene dynamics of the east-Asian monsoon in the lower Amur area. Geogr. Nat. Resour., 2018, vol. 39, pp. 239–247. https://doi.org/10.1134/S1875372818030071
  6. Bengtsson L., Enell M. Chemical analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology. 1986, pp. 423–451.
  7. Borisova O.K. Loess formation in New Zealand during the last glacial epoch and under modern conditions. Geomorfol. Paleogeogr., 2023, vol. 54, no. 2, pp. 61–79. (In Russ.). https://doi.org/10.31857/S2949178923020032
  8. Böhner J. General climatic controls and topoclimatic variations of Central and High Mountain Asia. Boreas, 2006, vol. 35, pp. 279–295. https://doi.org/10.1111/j.1502-3885.2006.tb01158.x
  9. Buggle B., Glaser B., Hambach U., Gerasimenko N., Marković S. An evaluation of geochemical weathering indices in loess–paleosol studies. Quat. Int., 2011, vol. 240, no. 1–2, pp. 12–21. https://doi.org/10.1016/j.quaint.2010.07.019
  10. FAO. Guidelines for soil description. 4th edition. Rome, 2006. 97 p.
  11. Feng Z.D., Zhai X.W., Ma Y.Z., Huang C.Q., Wang W.G., Zhang H.C., Khosbayar P., Narantsetseg T., Liu K.B., Rutter N.W. Eolian environmental changes in the Northern Mongolian Plateau during the past 35.000 yr. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 245, pp. 505–517.
  12. Fowell S.J., Hansen B.C.S., Peck J.A., Khosbayar P., Ganbold E. Mid to Late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quat. Res., 2003, vol. 59, pp. 353–363.
  13. Gerasimova M.I., Gubin S.V., Shoba S.A. Mikromorfologiya pochv prirodnykh zon SSSR [Micromorphological Features of the USSR Zonal Soils]. Pushchino: ONTI Pushchinskogo nauchnogo tsentra, 1992. 200 p.
  14. Grichuk V.P. Using the spore-pollen diagrams for the purposes of vegetation reconstruction of the Quaternary period. Pyl’tsevoi Analiz, 1949, pp. 90–106. (In Russ.).
  15. Heiri O., Lotter A.F., Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol., 2001, vol. 25, pp. 101–110. https://doi.org/10.1023/A:1008119611481
  16. Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50.000 years. Quat. Sci. Rev., 2006, vol. 25, no. 1–2, pp. 163–178. https://doi.org/10.1016/j.quascirev.2005.02.006
  17. Ibragimova V.S., Konyushkova M.V., Golovanov D.L. Practice of Composing and Applying Comparative Analysis to the Databases of Virgin Chestnut Soils of Caspian Region (Russia and Kazakhstan) and Mongolia. Ecosystems: Ecology and Dynamics, 2018, vol. 4, pp. 106–131. (In Russ.). https://doi.org/10.24411/2542-2006-2018-10023
  18. IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. Vienna: International Union of Soil Sciences (IUSS), 2022.
  19. Kalinin P., Alekseev A.O., Savko A. D. Loess, Palaeosols and Paleogeographic of Quarter of the Southeast of Russian Plain. In Tr. nauch.-issled. inst. geologii Voronezh. Gos. Univ. Vyp. 58 [Proc. of the Science and Research Institute of Geology of the Voronezh State University. Vol. 58]. Voronezh: VGU, 2009, pp. 1–139 p. (In Russ.).
  20. Kalinin P.I., Kudrevatykh I.Y., Panin P.G., Mitenko G.V., Malyshev V.V., Alekseev A.O. A model of loess formation and atmospheric circulation regimes in the Azov region during the Middle and Late Pleistocene. Quat. Sci. Rev., 2025, vol. 349, art. 109135. https://doi.org/10.1016/j.quascirev.2024.109135
  21. Karta geologicheskikh formatsii Mongol’skoi Narodnoi Respubliki. Masshtab: 1:500.000 [Map of Geological Complexes of Mongolia. 1:500,000]. Yanshin A.L., Ed. Moscow: GUKG SSSR, 1989.
  22. Katsuta N., Matsumoto G.I., Tani Y., Tani E., Murakami T., Kawakami S.-I., Nakamura T., Takano M., Matsumoto E., Abe O., Morimoto M., Okuda T., Krivonogov S.K., Kawai T. A higher moisture level in the early Holocene in northern Mongolia as evidenced from sediment records of Lake Hovsgol and Lake Erhel. Quat. Int., 2017, vol. 455, pp. 70–81. https://doi.org/10.1016/j.quaint.2017.06.032
  23. Khenzykhenova F., Dorofeyuk N., Shchetnikov A., Danukalova G., Bazarova V. Palaeoenvironmental and climatic changes during the Late Glacial and Holocene in the Mongolia and Baikal region: A review. Quat. Int., 2021, vol. 605–606, pp. 300–328. https://doi.org/10.1016/j.quaint.2021.04.038
  24. Klinge M., Sauer D. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia — A critical review and synthesis. Quat. Sci. Rev., 2019, vol. 210, pp. 26–50.
  25. Klinge M., Lehmkuhl F., Schulte P., Hülle D., Nottebaum V. Implications of (reworked) aeolian sediments and paleosols for Holocene environmental change in Western Mongolia. Geomorphology, 2017, vol. 292, pp. 59–71. https://doi.org/10.1016/j.geomorph.2017.04.027
  26. Konstantinov E.A., Zakharov A.L., Selezneva E.V., Filippova K.G. Morphometric analysis of the large en- closed depression of the Southern East European plain. Geomorfol. Paleogeogr., 2023, vol. 54, no. 1, pp. 99–111. (In Russ.). https://doi.org/10.31857/S2949178923010073
  27. Lehmkuhl F. The spatial distribution of loess and loess-like sediments in the mountain areas of Central and High Asia. Z. Geomorphol., 1997, vol. 111, pp. 97–116.
  28. Lehmkuhl F., Hilgers A., Fries S., Hülle D., Schlütz F., Shumilovskikh L., Felauer T., Protze J. Holocene geomorphological processes and soil development as indicator for environmental change around Karakorum, upper Orkhon Valley (Central Mongolia). Catena, 2011, vol. 87, pp. 31–44.
  29. Lehmkuhl F., Hülle D., Knippertz M. Holocene geomorphic processes and landscape evolution in the lower reaches of the Orkhon River (northern Mongolia). Catena, 2012, vol. 98, pp. 17–28. https://doi.org/10.1016/j.catena.2012.06.003
  30. Ma Y., Liu K., Feng Z., Meng H., Sang Y., Wang W., Zhang H. Vegetation changes and associated climate variations during the past ~38.000 years reconstructed from the Shaamar eolian-paleosol section, northern Mongolia. Quat. Int., 2013, vol. 311. pp. 25–35. https://doi.org/10.1016/j.quaint.2013.08.037
  31. Pankova E.I. Regularities Governing the Evolution of the Soil Mantle and the Properties of Steppe and Desert Soils in Mongolia. Pochvoved., 1997, vol. 7, pp. 789–798. (In Russ.).
  32. Panin P.G., Filippova K.G., Bukhonov A.V., Karpukhina N.V., Kalinin P.I., Ruchkin M. V. High-resolution analysis of the Likhvin loess-paleosol sequence (the central part of the East European Plain, Russia). Catena, 2021, vol. 205, art. 105445. https://doi.org/10.1016/j.catena.2021.105445
  33. Panin P., Kalinin P., Filippova K., Sychev N., Bukhonov A. Paleo-pedological record in loess deposits in the south of the East European plain, based on Beglitsa-2017 section study. Geoderma, 2023, vol. 437, art. 116567. https://doi.org/10.1016/j.geoderma.2023.116567
  34. Pozdnii kainozoi Mongolii (stratigrafiya i paleogeografiya) [Late Cenozoic of Mongolia (Stratigraphy and Paleogeography)]. Logatchov N.A., Ed. Moscow: Nauka Publ., 1989. 213 p.
  35. Pochvennyi pokrov i pochvy Mongolii [The Soil Cover and Soils of Mongolia]. Gerasimov I.P., Nogina N.A., Dorzhgotov D., Eds. Moscow: Nauka Publ., 1984. 194 p.
  36. Prokopenko A.A., Khursevich G.K., Bezrukova E.V., Kuzmin M.I., Boes X., Williams D.F., Fedenya S.A., Kulagina N.V, Letunova P.P., Abzaeva A.A. Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed. Quat. Res., 2007, vol. 68, pp. 2–17.
  37. Reimer P., Austin W.E.N., Bard E., et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 2020, vol. 62, no. 4, pp. 725–757. https://doi.org/10.1017/RDC.2020.41
  38. Retallack G.J. Soils and global change in the carbon cycle over geological time. Treatise Geochem., 2003, vol. 5, pp. 581–605. https://doi.org/10.1016/B0-08-043751-6/05087-8
  39. Stoops G. Guidelines for Analysis and Description of Soil and Regolith thin Sections. Madison: Soil Science Society of America, 2003. 184 p.
  40. Stuiver M., Reimer P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 1993, vol. 35, pp. 215–230. https://doi.org/10.1017/ S0033822200013904
  41. Tian F., Wang W., Rudaya N., Liu X., Cao X. Wet mid–late Holocene in central Asia supported prehistoric intercontinental cultural communication: Clues from pollen data. Catena, 2022, vol. 209, art. 105852. https://doi.org/10.1016/j.catena.2021.105852
  42. Timireva S.N., Batkhishig O., Sycheva S.A., Kononov Y.M., Simakova A.N., Byambaa G., Telmen T., Samdandorj M., Filippova K.G., Konstantinov E.A. Landscapes, paleosols and climate in the north of mongolia during the Holocene. IOP C. Ser.: Earth Env., 2020, vol. 438, art. e012027. https://doi.org/10.1088/1755-1315/438/1/012027
  43. Timireva S.N., Kononov Y.M., Sycheva S.A., Taratunina N.A., Kalinin P.I., Filippova K.G., Zakharov A.L., Konstantinov E.A., Murray A.S., Kurbanov R.N. Revisiting the Taman peninsula loess-paleosol sequence: Middle and Late Pleistocene record of Cape Pekla. Quat. Int., 2022, vol. 620, pp. 36–45. https://doi.org/10.1016/j.quaint.2021.06.010
  44. Timireva S.N., Kononov Yu.M., Khokhlova O.S., Sycheva S.A., Simakova A.N., Batkhishig O., Bolormaa T., Byambaa G., Telmen T., Zolzaya M., Filippova K.G. Late glacial and Holocene environmental changes in the north of Central Mongolia (Darkhan-Selenge Area). Geosfern. Issled., 2023, no. 2. pp. 102–122. (In Russ.). https://doi.org/10.17223/25421379/27/8
  45. Wang W., Ma Y.Z., Feng Z.D., Meng H.W., Sang Y.L., Zhai X.W. Vegetation and climate changes during the last 8660 cal. a BP in central Mongolia, based on a high-resolution pollen record from Lake Ugii Nuur. Chin. Sci. Bull., 2009, vol. 54, pp. 1579–1589. https://doi.org/10.1007/s11434-009-0023-8
  46. Wang W., Feng Z. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records. Earth Sci. Rev., 2013, vol. 122, pp. 38–57. https://doi.org/10.1016/j.earscirev.2013.03.005
  47. Wesche K., Ambarlı D., Kamp J., Török P., Treiber J., Dengler J. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv., 2016, vol. 25, no. 12, pp. 2197–2231. https://doi.org/10.1007/s10531-016-1214-7
  48. Zykina V.S., Zykin V.S., Malikova E.L. Pleistocene loess-soil sequence and aeolian relief of Western Siberia: chronology and features of their formation. Geomorfol. Paleogeogr., 2024, vol. 55, no. 2, pp. 34–62. (In Russ.). https://doi.org/10.31857/S2949178924020029

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».