Structures and properties of the late pleistocene paleosols of the loess-soil section of Obi-Mazar (Tajikistan)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The loess-soil series of Central Asia cover the history of subaerial sedimentation of the last 2–2.5 mln years. Significant thicknesses, a large number of paleosols, and an impressive chronology place the loess-soil series of the Afghan-Tajik depression on a par with the famous sections of the Loess Plateau of China. The study of the most significant sections located within the Khovaling Loess Plateau makes it possible to develop a regional chronostratigraphic chart, to study the structure and conditions of formation of the main stratigraphic benchmarks–buried paleosols. The present study is devoted to the clarification of the structural features of loess and paleosols of the Late Pleistocene in one of the sections of the Khovaling–Obi-Mazar Plateau. Based on the results of stratigraphic dissection, description of the macro- and micromorphological structure, magnetic susceptibility analysis, study of the chemical and granulometric composition, a comprehensive description of the structure and properties was carried out and the most probable conditions for the formation of paleosols and loess were established. In the Late Pleistocene part of the section, two loess layers and a pedocomplex PC1 with three welded paleosols, consisting of a total of 7 horizons, are distinguished. The deposits are characterized by high silt content, carbon content, and the presence of signs of pedogenesis and biological activity in all layers of the studied section. Available data indicate the presence of a poorly developed MIS 3 paleosol in the upper loess layer. The developed pedocomplex PC1 of Obi-Mazar, according to its stratigraphic position, structural features, and magnetic susceptibility data, belongs to the MIS 5. According to preliminary data, its formation occurred in semi-humid and humid conditions under forest vegetation, which contributed to the biogenic segregation of Fe-Mn compounds, as well as intra- and interhorizon redistribution of carbonates due to diagenetic processes. Towards the end of the Last Interglacial, gradual aridization occurred, due to which the upper paleosol to be the least developed.

Full Text

Restricted Access

About the authors

O. А. Tokareva

Institute of Geography RAS; Institute of Archeology and Ethnography SB RAS

Author for correspondence.
Email: tokareva1406@yandex.ru
Russian Federation, Moscow; Novosibirsk

М. P. Lebedeva

FRC V.V. Dokuchaev Soil Science Institute

Email: m_verba@mail.ru
Russian Federation, Moscow

P. M. Sosin

Institute of Water Problems, Hydropower and Ecology NAST

Email: sosin.paleosol@gmail.com
Tajikistan, Dushanbe

I. K. Ashurmadov

Institute of History, Archeology and Ethnography of NAST

Email: muhammad.islomov.2017@mail.ru
Tajikistan, Dushanbe

R. N. Kurbanov

Institute of Geography RAS; Institute of Archeology and Ethnography SB RAS; Lomonosov Moscow State University

Email: roger.kurbanov@gmail.com

Faculty of Geography

Russian Federation, Moscow; Novosibirsk; Moscow

References

  1. Becze-Deàk J., Langohr R., Verrecchia E.P. Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction. Geoderma, 1997, vol. 76, no. 3–4, pp. 221–252. https://doi.org/10.1016/S0016-7061(96)00106-1
  2. Bronger A., Winter R., Sedov S. Weathering and clay mineral formation in two Holocene soils and buried paleosols in Tadjikistan: Towards a Quaternary paleoclimatic record in Central Asia. Catena, 1998, vol. 34, no. 1–2, pp. 19–34. https://doi.org/10.1016/S0341-8162(98)00079-4
  3. Ding F., Ding Z. Chemical weathering history of the southern Tajikistan loess and paloclimate implications. Sci. China Ser. D-Earth Sci., 2003, vol. 46, no. 10, pp. 1012–1021. https://doi.org/10.1007/BF02959396
  4. Ding Z.L., Ranov V., Yang S.L., Finaev A., Han J.M., Wang G.A. The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet. Sci. Lett., 2002, vol. 200, no. 3–4, pp. 387–400. https://doi.org/10.1016/S0012-821X(02)00637-4
  5. Dodonov A.E. Chetvertichnyi period Srednei Azii: stratigrafiya, korrelyatsiya, paleogeografiya [Quaternary Period of Central Asia: Stratigraphy, Correlation, Paleogeography]. Moscow: GEOS Publ., 2002. 254 p.
  6. Dodonov A.E., Baiguzina L.L. Loess stratigraphy of Central Asia: Palaeoclimatic and palaeoenvironmental aspects. Quat. Sci. Rev., 1995, vol. 14, no. 7–8, pp. 707–720. https://doi.org/10.1016/0277-3791(95)00054-2
  7. Dodonov A.E, Sadchikov T.A., Sedov S.N., Simakova A.N., Zhou L.P. Multidisciplinary approach for paleoenvironmental reconstruction in loess-paleosol studies of the Darai Kalon section, Southern Tajikistan. Quat. Int., 2006, vol. 152, pp. 48–58. https://doi.org/10.1016/j.quaint.2005.12.001
  8. Dodonov A.E., Sheklton N., Zhou L.P., Lomov S.P., Finaev A.F. Loess-soil stratigraphy of the Quaternary of Central Asia: geochronology, correlation and evolution of paleoenvironment. Stratigr. Geol. Korrelyatsiya, 1999, vol. 7, no. 6, pp. 66–80. (In Russ.).
  9. Finaev А. Processes of transportation and sedimentation of dust aerosol. Global analysis, interpretation and modelling. In First science conference, 25-29 September, 1995. Garmish-Partenkirchen, Germany, 1995, p. 22.
  10. Frechen M., Dodonov A.E. Loess chronology of the Middle and Upper Pleistocene in Tadjikistan. Geol. Rundsch., 1998, vol. 87, pp. 2–20. https://doi.org/10.1007/s005310050185
  11. IUSS Working Group WRB. In World Soil Resources Reports. 2015, No. 106. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome: FAO, 2015.
  12. Khormali, F., Abtahi, A. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Miner., 2003, vol. 38, no. 4, pp. 511–527. https://doi.org/10.1180/0009855023740112
  13. Költringer C., Bradák B., Stevens T., Almqvist B., Banak A., Lindner M., Kurbanov R., Snowball I. Palaeoenvironmental implications from lower Volga loess – joint magnetic fabric and multi-proxy analyses. Quat. Sci. Rev., 2021, vol. 267, art. 107057. https://doi.org/10.1016/j.quascirev.2021.107057
  14. Konstantinov E.A., Zakharov A.L., Sychev N.V., Mazneva E.A., Kurbanov R.N., Morozova P.A. Loess accumulation in the southern part of European Russia at the end of the Quaternary period. Her. Russ. Acad. Sci., 2022, vol. 92, no. 3, pp. 342–351. https://doi.org/10.1134/S1019331622030108
  15. Kukla G.J. Loess stratigraphy in Central China. Quat. Sci. Rev., 1987, vol. 6, pp. 191–219.
  16. Kurbanov R.N., Anoikin A.A., Filimonova T.G., Karaev A.Ch., Meshcheryakova O.A., Kulakova E.P., Filatov E.A., Chistyakov P.V., Sharipov A.F. Geoarchaeological research at the Khonako III site in Southern Tajikistan in 2022. Probl. Arkheol., Etnogr., Antropol. Sibiri Sopred. Territorii, 2022, no. 28, pp. 157–163. (In Russ.).
  17. Lazarenko A.A., Pakhomov M.M., Pen’kov A.V., Shelkoplyas V.N., Giterman R.E., Minina E.A., Ranov V.A. On the possibility of climatostratigraphic division of the loess formation of Central Asia. In Pozdnii kainozoi Severnoi Evrazii [Late Cenozoic of Northern Eurasia]. Moscow: GIN AN SSSR Publ., 1977, pp. 70–133. (In Russ.).
  18. Laukhin S.A., Pospelova G.A., Ranov V.A. Estimation of the age of the upper regional buried soil of the loess section Khonako-3 (Tajikistan). Byull. MOIP. Otdel Geol., 2001, vol. 76, no. 3, pp. 63–68. (In Russ.).
  19. Lomov S.P., Sosin P.S. About the soils of the Paleolithic site Karatau I in Southern Tajikistan. Izv. AN TSSR. Otdel. Biol. Nauk, 1976, no. 4, vol. 65, pp. 93–99. (In Russ.).
  20. Lomov S.P., Sosin P.S., Sosnovskaya V.P. Structure and chemical composition of buried soils in Tajikistan. Pochvoved., 1982, no. 1, pp. 18–30. (In Russ.).
  21. Makeev A.O. Pedogenic alteration of aeolian sediments in the upper loess mantles of the Russian Plain. Quat. Int., 2009, vol. 209, no. 1–2, pp. 79–94. https://doi.org/10.1016/j.quaint.2009.03.007
  22. Mazneva E., Konstantinov E., Zakharov A., Sychev N., Tkach N., Kurbanov R., Sedaeva K., Murray A. Middle and Late Pleistocene loess of the Western Ciscaucasia: Stratigraphy, lithology and composition. Quat. Int., 2021, no. 590, pp. 146–163. https://doi.org/10.1016/j.quaint.2020.11.039
  23. Munsell A.H. Munsell Soil Color Charts. New Windsor, New York: GretagMacbeth, 617 Little Britain Rd., 2000.
  24. Ozer M., Orhan M., Isik N.S. Effect of particle optical properties on size distribution of soils obtained by laser diffraction. Environmental & Engineering Geoscience, 2010, vol. 16, no. 2, pp. 163–173. https://doi.org/10.2113/gseegeosci.16.2.163
  25. Putevoditel’ ekskursii Mezhdunarodnogo simpoziuma po probleme “Granitsa neogena i chetvertichnoi sistemy” [Guide for the Excursion of the Int. Symp. on the Problem “Boundary of the Neogene and Quaternary System”]. Dodonov A.E., Melamed Ya.R., Nikiforova K.V., Eds. Moscow: Nauka Publ., 1977. 183 p.
  26. Ranov V. The ‘Loessic Palaeolithic’ in South Tadjikistan, Central Asia: Its industries, chronology and correlation. Quat. Sci. Rev., 1996, vol. 14, pp. 731–745. https://doi.org/10.1016/0277-3791(95)00055-0
  27. Ranov V.A., Shefer Y. Loess Paleolithic. Arkheol., Etnogr. Antropol. Evrazii, 2000, no. 2, vol. 2, pp. 20–32. (In Russ.).
  28. Rousseau D.-D., Antoine P., Hatté C., Lang A., Zöller L., Fontugne M., Ben Othmang D., Luck J.M., Moine O., Labonne M., Bentaleb I., Jolly D. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the last glaciation. Quat. Sci. Rev., 2002, vol. 21, pp. 1577–1582. https://doi.org/10.1016/S0277-3791(02)00034-3
  29. Schäfer J., Sosin P.M. Am Fuße des Pamir – Archäologie in der Steilwand. Archäol. Deutschland, 2013, pp. 12–16. (In Germ.).
  30. Schäfer J., Sosin P.M., Ranov V.A. Neue untersuchungen zum losspalaolithikum am Obi-Mazar, Tadžikistan. Archäol. Korrespond., 1996, vol. 26, pp. 97–109. (In Germ.).
  31. Schäfer J., Sosin P.M., Ranov V.A. The “cultural” evolution of man and the chronostratigraphical background of changing environments in the loess palaeosoil sequences of Obi-Mazar and Khonako (Tadjikistan). Anthropol., 1998, no. 37, vol. 1–2, pp. 121–135.
  32. Shackleton N.J., An Z., Dodonov А.Е., Gavin G., Kukla G.J., Ranov V.A., Zhou L.P. Accumulation rate of loess in Tadjikistan and China: relationship with global ice volume cycles. Quat. Proc., 1995, no. 4, pp. 1–6.
  33. Sirenko N.A., Turlo S.I. Razvitie pochv i rastitel’nosti Ukrainy v pliotsene i pleistotsene [Development of Soils and Vegetation of Ukraine in the Pliocene and Pleistocene]. Kiev: Naukova dumka Publ., 1986. 188 p.
  34. Stoops G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (2nd ed.). Wiley, 2021. 256 p.
  35. Újvári G., Kok J.F., Varga G., Kovács J. The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Sci. Rev., 2016, vol. 154, pp. 247–278. https://doi.org/10.1016/j.earscirev.2016.01.006
  36. Valiakhmedov V. Pupal chambers of soil-dwelling invertebrates in gray soils of Tajikistan and their influence on the formation of the soil profile. Pochvoved., 1977, no. 4, pp. 85–91. (In Russ.).
  37. Vandenberghe J., Zhisheng A., Nugteren G., Huayu L., van Huissteden K. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology, 1997, vol. 25, pp. 35–38. https://doi.org/10.1130/0091-7613(1997)025<0035:NATSFT>2.3.CO;2
  38. Varga G., Újvári G., Kovács J. Interpretation of sedimentary (sub)populations extracted from grain size distributions of Central European loess-paleosol series. Quat. Int., 2019, vol. 502, pp. 60–70. https://doi.org/10.1016/j.quaint.2017.09.021
  39. Velichko A.A. Problems of correlation of Pleistocene events in glacial, periglacial-loess and coastal areas of the East European Plain. In Problemy regional’noi i obshchei paleogeografii lessovykh i periglyatsial’nykh oblastei [Problems of Regional and General Paleogeography of Loess and Periglacial Areas]. Moscow: Nauka Publ., 1975, pp. 7–26. (In Russ.).
  40. Velichko A.A., Borisova O.K., Zakharov A.L., Kononov Yu.M., Konstantinov E.A., Kurbanov R.N., Morozova T.D., Panin P.G., Timireva S.N. Change of landscape conditions in the south of the Russian Plain in the Late Pleistocene according to the results of a study of the loess-soil series of the Azov region. Izv. Akad. Nauk, Ser. Geogr., 2017, vol. 1, pp. 74–83. (In Russ.). https://doi.org/10.15356/0373-2444-2017-1-74-83
  41. Vlaminck S., Kehl M., Lauer T., Shahriari A., Sharifi J., Eckmeier E., Lehndorff E., Khormali F., Frechen M. Loess-soil sequence at Toshan (Northern Iran): Insights into late Pleistocene climate change. Quat. Int., 2016, vol. 399, pp. 122–135. https://doi.org/10.1016/j.quaint.2015.04.028
  42. Volvakh A., Volvakh N., Ovchinnikov I., Smolyaninova L., Kurbanov R. Loess-paleosol record of MIS 3-MIS 2 of north-east Cis-Salair plain, south of West Siberia. Quat. Int., 2022, vol. 620, pp. 58–74. https://doi.org/10.1016/j.quaint.2020.10.069
  43. Vorob’eva L.A. Khimicheskii analiz pochv: Uchebnik [Chemical Analysis of Soils: Manual]. Moscow: MGU Publ., 1998. 272 p.
  44. Yang S., Ding F., Ding Z. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 1695–1709. https://doi.org/10.1016/j.gca.2005.12.012
  45. Yang, S.L., Ding, Z.L. Winter-spring precipitation as the principal control on predominance of C-3 plants in Central Asia over the past 1.77 Myr: evidence from delta C-13 of loess organic matter in Tajikistan. Paleogeogr. Paleoclimatol. Paleoecol., 2006, vol. 235, pp. 330–339. https://doi.org/10.1016/j.palaeo.2005.11.007

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of the location (a) and general view of the outcrop and section of Obi-Mazar (b). The red dot (a) shows the location of the studied section, the yellow lines (b) show the occurrence of six identified pedocomplexes (PC).

Download (1MB)
3. Fig. 2. Stratigraphic column of the Obi-Mazar section (a); structure of the upper part of the Obi-Mazar section (b); general view of the Obi-Mazar outcrop (Schäfer and Sosin, 2013) (c); PC are highlighted with dark stripes; carbonates in pores and a humified zone in the L1 member (d); carbonates in pores and organomineral cutans along root passages, horizon 2ABwk (e); bioliths-chambers of invertebrates with hard carbonated walls in horizon 2BAk (e); carbonates in pores and Fe-Mn cutans along root passages, horizon 3Bk (g).

Download (1MB)
4. Fig. 3. Micromorphological features of soil horizons and loess layers in the upper part of the Obi-Mazar section. Red arrows point to the described features. CaCO3 hypocutans near a pore filled with VPM – L1.5 (XPL) (a); sparite intergrowths, 1ABk (XPL) (b); coprogenic microstructure, silty-dusty cutans and infillings, CaCO3 cutans, 1BAk (PPL) (c); sparite intergrowths, silty cutans and infillings, CaCO3 hypocutans, 2ABwk (XPL) (d); silty-dusty infillings, thick CaCO3 hypocutans, weakly carbonated VPM, 2BAk (XPL) (d); carbonated excrements in pores and carbonate micronodules, 3Ak (XPL) (e); rounded humified aggregate with CaCO3 covers inherited from transformed humus horizon, 3Bk (XPL) (g); thick CaCO3 infilling with porosity and Fe clots inside, 3BCwk (PPL) (z); silty-silty filling with crescent-shaped stratification, 3BCwk (PPL) (i); biogenic channels, micritic infilling, excrements, L2.2 (PPL) (k).

Download (2MB)
5. Fig. 4. The degree of expression of microtraits in the studied horizons of paleosols. The width of the column in the diagram reflects the frequency of occurrence of the genetic microtrait for each horizon. IPM – intraped mass. NP – new formations. Dust and clay. – silty-dust and clayey cutans. In the column by micritic impregnation of IPM, stronger impregnation is marked in a darker color.

Download (276KB)
6. Fig. 5. Profile distribution of magnetometric and granulometric analysis results. HS – Holocene soil. FMS – field magnetic susceptibility (SI units). Silt – particles <1 μm are marked with a green line, <2 μm – with a black line (a). Profile distribution of chemical analysis results (b).

Download (500KB)
7. Fig. 6. Comparison of the distribution curves of the granulometric composition for the L1 and PC1 packs, constructed on the basis of measurements of 40 randomly selected samples from the corresponding packs.

Download (141KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».