Sediment Yield in the Caucasus Mountains and Its Trends as a Reflection of Climate Change and Anthropogenic Impact

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sediment runoff of mountain rivers is an important characteristic that reflects the intensity of denudation in various altitudinal zones, as well as the spatial and temporal features of its changes. The Caucasus region, which includes the Greater and Lesser Caucasus, is characterized by significant territorial contrast associated with differences in the geological and geomorphological structure, seismo-tectonic activity, climate, which together determine the lifestyle of the local population and the features of anthropogenic impact on landscapes. The paper presents the results of estimates of the contemporary rates of denudation of the region, obtained on the basis of processing a database on the flow of suspended sediments of rivers at 194 gauge stations with a duration of observations of more than 10 years. To identify the influence of the main natural and anthropogenic factors on the sediment runoff of rivers, calculated and published data on spatially distributed indicators characterizing individual factors or their combinations were used. Statistical processing of dependencies between individual indicators and sediment runoff of rivers was carried out. It has been established that the mean suspended sediment yield (SSY) for the region is 446 t km–2 yr–1. It reaches its maximum values (SSY > 1500 t km–2 year–1) in the Eastern Caucasus, where it has remained high in recent decades and continues to grow in a number of river basins. For other parts of the Greater Caucasus, a trend of decreasing sediment runoff was revealed, due to a decrease in the glacial supply of rivers and, more locally, a decrease in the area of arable land in the mountains.

About the authors

V. N. Golosov

Lomonosov Moscow State University, Faculty of Geography; Institute of Geography, Russian Academy of Sciences, ; Kazan Federal University

Author for correspondence.
Email: gollosov@gmail.com
Russia, Moscow; Russia, Moscow; Russia, Kazan

A. S. Tsyplenkov

Lomonosov Moscow State University, Faculty of Geography

Email: gollosov@gmail.com
Russia, Moscow

References

  1. Абдуев М.А. Денудация в горных областях Азербайджана по данным о стоке наносов и растворенных веществ // Гидрометеорология и экология. 2011. № 4. С. 122–131.
  2. Ахундов С.А. Интенсивность денудации Азербайджанской части Кавказа // Геоморфология. 1974. № 3. С. 46–52.
  3. Беркович К.М. Русловые процессы на реках в сфере влияния водохранилищ. М.: Изд-во Моск. ун-та, 2012. 163 с.
  4. Габриелян Г.К. Интенсивность денудации на Кавказе // Геоморфология. 1971. № 1. С. 22–27.
  5. Голосов В.Н., Сосин П.М., Беляев В.Р., Вольфграмм Б., Ходжаев Ш.И. Влияние ирригационной эрозии на деградацию почв речных долин в высокогорном поясе Памира // Почвоведение. 2015. № 3. С. 373–384.
  6. Курбатова И.Е. Мониторинг трансформации Краснодарского водохранилища с использованием спутниковых данных высокого разрешения // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11. № 3. С. 42–53.
  7. Лагута А.А., Погорелов А.В. Особенности заиления Краснодарского водохранилища. Опыт оценки по данным батиметрических съемок // Географический вестн. 2018. № 4 (47). С. 54–66.
  8. Лагута А.А., Погорелов А.В. Трансформация Краснодарского водохранилища (1941–2018 гг.) // Изв. ВУЗов. Северо-Кавказский регион. Естественные науки. 2019. № 3. С. 45–54.
  9. Ларионов Г.А. Эрозия и дефляция почв: основные закономерности и количественные оценки. М.: Изд-во МГУ, 1993. 200 с.
  10. Маккавеев Н.И., Мандыч А.Ф., Чалов Р.С. Влияние восходящего развития рельефа на глубинную эрозию и твердый сток рек Западной Грузии // Вестн. Моск. ун-та. Серия 5. География. 1968. № 4. С. 52–58.
  11. Мандыч А.Ф. Величина твердого стока рек Западной Грузии // Вестн. Моск. ун-та. Серия 5. География. 1967. № 3. С. 134–137.
  12. Мозжерин В.В., Шарифуллин А.Г. Оценка современного денудационного снижения гор по данным о стоке взвешенных наносов рек // Геоморфология. 2014. № 1. С. 15–23.
  13. Петров О.А. Анализ динамики заиления Чирюртского водохранилища на р. Сулак // Изв. Всерос. научно-исслед. ин-та гидротехники им. Б.Е. Веденеева. 2018. Т. 290. С. 47–54.
  14. Петров О.А., Саидов М.А. Анализ динамики заиления водохранилищ на р. Сулак и ее притоках // Гидротехническое строительство. 2019. № 9. С. 43–47.
  15. Побелат Д.А., Медведев А.В. Мониторинг переработки берегов Краснодарского водохранилища: сб. статей ХI Всерос. конф. молодых ученых, посвященной 95-летию Кубанского ГАУ и 80-летию со дня образования Краснодарского края. Краснодар: Изд-во Кубанский аграрный ун-т, 2017. С. 829–830.
  16. Погорелов А.В., Лагута А.А., Киселёв Е.Н. Новые сведения о заилении Краснодарского водохранилища по данным батиметрической съемки // Географический вестн. 2022. Т. 61. № 2. С. 166–179.
  17. Торопов П.А., Алешина М.А., Семенов В.А. Тенденции изменений климата Черноморско-Каспийского региона за последние 30 лет // Вестн. Моск. ун-та. Серия 5. География. 2018. № 2. С. 67–77.
  18. Харченко С.В., Федин А.В., Голосов В.Н. Темпы денудации в перигляциальных областях высокогорий: методы и результаты исследований // Геоморфология. 2021. № 1. С. 3–18.
  19. Хмаладзе Г.Н. Взвешенные наносы рек Армянской ССР. Л.: Гидрометеоиздат, 1964. 246 с.
  20. Чалов С.Р., Терский П.Н., Ефимова Л.Е., Терская А.И., Ефимов В.А., Данилович И.С. Проблемы гидрологического мониторинга в бассейнах трансграничных рек Восточной Европы (на примере Западной Двины) // Инженерные изыскания. 2019. № 13. С. 32–44.
  21. Шварев С.В, Харченко С.В., Голосов В.Н., Успенский М.И. Количественная оценка факторов активизации селей в 2006–2019 годах на склоне хребта Аигба (Западный Кавказ) // География и природные ресурсы. 2021. Т. 42. № 2. С. 41–50.
  22. Abatzoglou J.T., Dobrowski S.Z., Parks S.A., et al. Data Descriptor: TerraClimate a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015 // Sci. Data. 2018. Vol. 5. Art. 170 191. https://doi.org/10.1038/sdata.2017.191
  23. Al-Chokhachy R., Black T.A., Thomas C., et al. Linkages between unpaved forest roads and streambed sediment: why context matters in directing road restoration // Res. Ecol. 2016. Vol. 24. P. 589–598. https://doi.org/10.1111/rec.12365
  24. Borga M., Stoffel M., Marchi L., et al. Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows // J. Hydrology. 2014. Vol. 518B. P. 194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022
  25. Buchner J., Yin H., Frantz D., et al. Land-Cover Change in the Caucasus Mountains since Based on the Topographic Correction of Multi-Temporal Landsat Composites // Remote Sens. Environ. 2020. Vol. 248. Art. 111 967. https://doi.org/10.1016/j.rse.2020.111967
  26. Cendrero A., Remondo J., Beylich A.A., et al. Denudation and geomorphic change in the Anthropocene; a global overview // Earth-Science Reviews. 2022. Vol. 233. Art. 104 186. https://doi.org/10.1016/j.earscirev.2022.104186
  27. DiBiase R.A., Whipple K.X., Heimsath A.M., et al. Landscape Form and Millennial Erosion Rates in the San Gabriel Mountains, CA. // Earth Planet Sci. Let. 2010. Vol. 289. P. 134–144. https://doi.org/10.1016/j.epsl.2009.10.036
  28. Gabet E.J., Mudd S.M. A Theoretical Model Coupling Chemical Weathering Rates with Denudation Rates // Geology. 2009. Vol. 37. P. 151–154. https://doi.org/10.1130/G25270A.1
  29. Garcia-Ruiz J.M., Lasanta T. Land-use changes in the Spanish Pyrenees // Mountain Research and Development. 1990. Vol. 10. № 3. P. 267–279.
  30. Garcıa-Ruiz J.M., Lana-Renault N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region – a review // Agr. Ecosyst. Environ. 2011. Vol. 140. P. 317–338. https://doi.org/10.1016/j.agee.2011.01.003
  31. Giardini D., Grünthal G., Shedlock K.M., Zhang P. The GSHAP Global Seismic Hazard // Int. Handbook of Earthquake and Engineering Seismology. 2003. P. 1233–1239.
  32. Hartmann J., Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface // Geochem. Geophys. Geosyst. 2012. Vol. 13. Q12004. https://doi.org/10.1029/2012GC004370
  33. Hartmann J., Moosdorf N., Lauerwald R., et al. Global Chemical Weathering and Associated P-Release – The Role of Lithology, Temperature and Soil Properties // Chem. Geol. 2014. Vol. 363. P. 145–163. https://doi.org/10.1016/j.chemgeo.2013.10.025
  34. Hengl T., de Jesus J.M., Heuvelink G.B.M., et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning // PLoS One. 2017. Vol. 12. e0169748. https://doi.org/10.1371/journal.pone.0169748
  35. Kozak J. Forest cover change in the Western Carpathians in the past 180 years // Mountain Research and Development. 2003. Vol. 23. № 4. P. 369–375. https://doi.org/10.1659/0276-4741(2003)023[0369: FCCITW]2.0.CO;2
  36. Panagos P., Borrelli P., Meusburger K., et al. Global Rainfall Erosivity Assessment Based on High-Temporal Resolution Rainfall Records // Sci. Rep. 2017. Vol. 7. Art. 4175. https://doi.org/10.1038/s41598-017-04282-8
  37. Potapov P., Li X., Hernandez-Serna A., et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data // Remote Sens. Environ. 2021. Vol. 253. Art. 112165. https://doi.org/10.1016/j.rse.2020.112165
  38. Raup B., Racoviteanu A., Khalsa S.J.S., et al. The GLIMS Geospatial Glacier Database: A New Tool for Studying Glacier Change // Glob. Planet. Chang. 2007. Vol. 56. P. 101–110. https://doi.org/10.1016/j.gloplacha.2006.07.018
  39. Remondo J., Soto J., González-Díez A., et al. Human impact on geomorphic processes and hazards in mountain areas in northern Spain // Geomorphology. 2005. Vol. 66. P. 69–84. https://doi.org/10.1016/j.geomorph.2004.09.009
  40. Schirpke U., Tasser E., Leitinger G., et al. Using the Ecosystem Services Concept to Assess Transformation of Agricultural Landscapes in the European Alps // Land. 2022. Vol. 11. № 49. https://doi.org/10.3390/land11010049
  41. Schliep K., Hechenbichler K. kknn: Weighted k-Nearest Neighbors, 2016.
  42. Schmidt L.K., Francke T., Rottler E., et al. Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria // Earth Surf. Dyn. 2022. Vol. 10. P. 653–669. https://doi.org/10.5194/esurf-10-653-2022
  43. Schwanghart W., Scherler D., Bumps in River Profiles: Uncertainty Assessment and Smoothing Using Quantile Regression Techniques // Earth Surf. Dynam. 2017. Vol. 5. P. 821–839. https://doi.org/10.5194/esurf-5-821-2017
  44. Syvitski J., Restepo-Angel J., Saito Y., et al. Earth’s sediment cycle during the Anthropocene // Nature Reviews Earth & Environ. 2022. Vol. 3. P. 179–196. https://doi.org/10.1038/s43017-021-00253-w
  45. Tielidze L.G., Nosenko G.A., Khromova T.E., et al. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020 // Cryosphere. 2022. Vol. 16. P. 489–504. https://doi.org/10.5194/tc-16-489-2022
  46. Tielidze L.G., Wheate R.D. The greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan) // Cryosphere. 2018. Vol. 12. № 1. P. 81–94. https://doi.org/10.5194/tc-12-81-2018
  47. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Int. J. Climatol. 2019. Vol. 39. № 12. P. 4703–4720. https://doi.org/10.1002/joc.6101
  48. Tsyplenkov A., Golosov V., Belyakova P. How did the suspended sediment load change in the north Caucasus during the Anthropocene? // Hydrological Processes. 2021. Vol. 35. № 10. Art. 14403. https://doi.org/10/1002/hyp.1403
  49. Tsyplenkov A., Vanmaercke M., Collins A.L., et al. Elucidating suspended sediment dynamics in a glacierized catchment after an exceptional erosion event: The Djankuat catchment, Caucasus Mountains, Russia // Catena. 2021. Vol. 203. Art. 105285. https://doi.org/10.1016/j.catena.2021.105285
  50. Tsyplenkov A., Vanmaercke M., Golosov V., et al. Suspended Sediment Budget and Intra-Event Sediment Dynamics of a Small Glaciated Mountainous Catchment in the Northern Caucasus // J. Soils Sediments. 2020. Vol. 20. P. 3266–3281. https://doi.org/10.1007/s11368-020-02633-z
  51. Turowski J.M., Rickenmann D., Dadson S.J. The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data // Sedimentology. 2010. Vol. 57. P. 1126–1146. https://doi.org/10.1111/j.1365-3091.2009.01140.x
  52. Vanacker V., von Blanckenburg F., Govers G., et al. Transient River Response, Captured by Channel Steepness and Its Concavity // Geomorphology. 2015. Vol. 228. P. 234–243. https://doi.org/10.1016/j.geomorph.2014.09.013
  53. Vanmaercke M., Poesen J., Verstraeten G., et al. Sediment yield in Europe: Spatial patterns and scale dependency // Geomorphology. 2011. Vol. 130. P. 142–161. https://doi.org/10.1016/j.geomorph.2011.03.010
  54. Vezzoli G., Garzanti E., Limonta M., et al. Focused Erosion at the Core of the Greater Caucasus: Sediment Generation and Dispersal from Mt. Elbrus to the Caspian Sea // Earth-Sci. Rev. 2020. Vol. 200. Art. 102987. https://doi.org/10.1016/j.earscirev.2019.102987
  55. Volodicheva N. The Caucasus. The Physical Geography of Northern Eurasia / M. Shahgedanova (Ed.). Oxford, UK: Oxford Univ. Press, 2002. P. 350–376.
  56. Vorosmarty C.J., Meybeck M., Fekete B., et al. Anthropogenic sediment retention: major global impact from registered river impoundments // Glob. Planet. Chang. 2003. Vol. 39. P. 169–190. https://doi.org/10.1016/S0921-8181(03)00023-7
  57. Wiesmair M., Otte A., Waldhardt R. Relationships between plant diversity, vegetation cover, and site conditions: implications for grassland conservation in the Greater Caucasus // Biodivers Conserv. 2007. Vol. 26. P. 273–291. https://doi.org/10.1007/s10531-016-1240-5
  58. Wobus C., Whipple. K.X., Kirby E., et al. Tectonics from Topography: Procedures, Promise, and Pitfalls // GSA Special Papers. 2006. Vol. 398. P. 55–74.
  59. Yamazaki D., Ikeshima D., Sosa J., et al. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset // Water Resour. Res. 2019. Vol. 55. P. 5053–5073. https://doi.org/10/1029/2019WR024873
  60. Zalasiewicz J., Waters C.N., Williams M., et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal: The Quaternary System and its formal subdivision // Quat. Int. 2015. Vol. 383. P. 196–203. https://doi.org/10.1016/j.quaint.2014.11.045

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (67KB)
4.

Download (86KB)

Copyright (c) 2023 В.Н. Голосов, А.С. Цыпленков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies