Sedimentation Rates Evaluation in Caucasus Mountain Lakes as Indicators of Their Catchments Denudation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sedimentation rates of five lakes in the Western and Central Caucasus in the late Holocene were studied on the basis of radioisotope dating (137Cs of global and Chernobyl origin, 210Pbex, 14C). The lakes are located in different landscape zones and has different origin. The selection of bottom sediment cores was carried out after a reservoir map of the depths моnitoring based in areas with average maximum depths. The studied lakes catchments are minimally affected by anthropogenic impact; therefore, the reservoir influx of sediments, the sedimentation rate and their changes over time are mainly controlled by natural factors. It has been established that for two lakes in the mid-mountains with tinned and forested catchments, the current sediment accumulation rate is 0.05–0.07 cm/year, and half of it consist organic matter. Sedimentation rates in the high-mountain Donguz-Orun Lake increases and have been equal to 0.32 cm/year in the last 30 years without taking into account the significant amount of sediment that is redeposited in the front of the reservoir delta. The opposite trend of sedimentation rates was revealed for the high-mountain Garabashi Lake, the distinctive feature of which is the absence of glaciers at present and a rather high projective cover of vegetation catchment. Sedimentation rates in the coastal Sukhoi Liman Lake, located in the low-mountain zone, are 0.1 cm/year with a slight growth trend due to some increase in anthropogenic load associated with local clearcuts and an increase in recreational load.

About the authors

N. V. Kuzmenkova

Institute of Geography, Russian Academy of Sciences; Faculty of Chemistry, Moscow State University

Author for correspondence.
Email: kuzmenkovanv@my.msu.ru
Russia, Moscow; Russia, Moscow

V. N. Golosov

Institute of Geography, Russian Academy of Sciences; Faculty of Geography, Moscow State University

Email: kuzmenkovanv@my.msu.ru
Russia, Moscow; Russia, Moscow

E. A. Grabenko

Institute of Geography, Russian Academy of Sciences

Email: kuzmenkovanv@my.msu.ru
Russia, Moscow

M. Y. Alexandrin

Institute of Geography, Russian Academy of Sciences

Email: kuzmenkovanv@my.msu.ru
Russia, Moscow

V. A. Shishkov

Institute of Geography, Russian Academy of Sciences

Email: kuzmenkovanv@my.msu.ru
Russia, Moscow

O. N. Byhalova

FGBU “State Reserve Utrish,”

Email: kuzmenkovanv@my.msu.ru
Russia, Anapa

References

  1. Александрин М.Ю., Дарьин А.В., Грачев А.М., Соломина О.Н. Динамика региональных климатических условий за последние 2000 лет по данным литолого-геохимических исследований донных осадков озера Каракель (Западный Кавказ) // Изв. РАН. Сер. геогр. 2019. № 1. С. 73–85. https://doi.org/10.31857/S2587-55662019173-85
  2. Израэль Ю.А. Атлас современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси / под ред. Ю.А. Израэля, И.М. Богдевича. Минск: Белкартография, 2009. 140 с.
  3. Котляков В.М., Хромова Т.Е., Носенко Г.А., Попова В.В., Чернова Л.П., Муравьев А.Я., Рототаева О.В., Никитин С.А., Зверкова Н.М. Современные изменения ледников горных районов России. М.: KMK, 2015. 288 с.
  4. Михаленко В.Н. Ледники и климат Эльбруса. М.–СПб.: Нестор-История, 2020. 372 с.
  5. Abril J.M. On the use of 210Pb-based records of sedimentation rates and activity concentrations for tracking past environmental changes // J. Environ. Radioact. 2022. Vol. 244–245. 106823. https://doi.org/10.1016/j.jenvrad.2022.106823
  6. Ahn Y.S. Recent Changes in Sedimentation Rate in Three Lakes of Ishikari Wetland, Northern Japan Determined by 210Pb Dating // Wat. Res. 2018. Vol. 45. P. 795–802. https://doi.org/10.1134/S009780781805024X
  7. Ahn Y.S., Nakamura F., Kizuka T., Nakamura Y. Elevated sedimentation in lake records linked to agricultural activities in the Ishikari River floodplain, northern Japan // Earth Surf. Process. Landf. 2009. Vol. 34. P. 1650–1660. https://doi.org/10.1002/esp.1854
  8. Appleby P.G., Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment // CATENA. 1978. Vol. 5. P. 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2
  9. Carrivick J.L., Tweed F.S. Proglacial lakes: character, behaviour and geological importance // Quat. Sci. Rev. 2013. Vol. 78. P. 34–52. https://doi.org/10.1016/j.quascirev.2013.07.028
  10. Corbett D.R., Vance D., Letrick E., Mallinson D., Culver S. Decadal-scale sediment dynamics and environmental change in the Albemarle Estuarine System, North Carolina // Estuar. Coast. Shelf Sci. 2007. Vol. 71. № 3–4. P. 717–729. https://doi.org/10.1016/j.ecss.2006.09.024
  11. Corbett D.R., Walsh J.P. 210Lead and 137Cesium: establishing a chronology for the last century / I. Shennan, A.J. Long, B.P. Horton (Eds.). Handbook of Sea-Level Research. UK, Chichester, John Wiley & Sons, Ltd., 2015. P. 361–372. https://doi.org/10.1002/9781118452547.ch24
  12. Doering C., Akber R., Heijnis H. Vertical distributions of 210Pbexcess, 7Be and 137Cs in selected grass covered soils in Southeast Queensland, Australia // J. Environ. Radioact. 2006. Vol. 87. P. 135–147. https://doi.org/10.1016/j.jenvrad.2005.11.005
  13. Gao J., Long Y., Zhang X., Collins A.L., He X., Zhang Y., Shi Z. Interpreting sedimentation dynamics at Longxi catchment in the Three Gorges Area, China, using Cs-137 activity, particle size and rainfall erosivity // J. Mt. Sci. 2016. Vol. 13. P. 857–869. https://doi.org/10.1007/s11629-015-3637-0
  14. García-Ruiz J.M., Nadal-Romero E., Lana-Renault N., Beguería S. Erosion in Mediterranean landscapes: Changes and future challenges // Geomorphol. 2013. Vol. 198. P. 20–36. https://doi.org/10.1016/j.geomorph.2013.05.023
  15. Golosov V., Tsyplenkov A. Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region // Water. 2021. Vol. 13 (22). 3173. https://doi.org/10.3390/w13223173
  16. Grachev A.M., Novenko E.Y., Grabenko E.A., Alexandrin M.Y., Zazovskaya E.P., Konstantinov E.A., Shishkov V.A., Lazukova L.I., Chepurnaya A.A., Kuderina T.M., Ivanov M.M., Kuzmenkova N.V., Darin A.V., Solomina O.N. The Holocene paleoenvironmental history of Western Caucasus (Russia) reconstructed by multi-proxy analysis of the continuous sediment sequence from Lake Khuko // Holocene. 2021. Vol. 31. P. 368–379. https://doi.org/10.1177/0959683620972782
  17. Hasholt B., Walling D.E., Owens P.N. Sedimentation in arctic proglacial lakes: Mittivakkat Glacier, south-east Greenland // Hydrol. Process. 2000. Vol. 14. P. 679–699. https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<679::AID-HYP966>3.0.CO;2-E
  18. Hinderer M., Kastowski M., Kamelger A., Bartolini C., Schlunegger F. River loads and modern denudation of the Alps – A review // Earth-Sci. Rev. 2013. Vol. 118. P. 11–44. https://doi.org/10.1016/j.earscirev.2013.01.001
  19. Hutchinson S.M., Akinyemi F.O., Mîndrescu M., Begy R., Feurdean A. Recent sediment accumulation rates in contrasting lakes in the Carpathians (Romania): impacts of shifts in socio-economic regime // Reg. Environ. Change. 2016. Vol. 16. P. 501–513. https://doi.org/10.1007/s10113-015-0764-7
  20. Izrael Y.A. The atlas of caesium-137 contamination of Europe after the Chernobyl accident / A. Karaoglou, G. Desmet, G.N. Kelly, H.G. Menzel (Eds.). The radiological consequences of the Chernobyl accident. Brussels: European Commission, EUR 16544 EN., 1996. P. 1–10.
  21. Klaar M.J., Kidd C., Malone E., Bartlett R., Pinay G., Chapin F.S., Milner A. Vegetation succession in deglaciated landscapes: implications for sediment and landscape stability // Earth Surf. Process. Landf. 2015. Vol. 40. P. 1088–1100. https://doi.org/10.1002/esp.3691
  22. Kuzmenkova N.V., Ivanov M.M., Alexandrin M.Y., Grachev A.M., Rozhkova A.K., Zhizhin K.D., Grabenko E.A., Golosov V.N. Use of natural and artificial radionuclides to determine the sedimentation rates in two North Caucasus lakes // Environ. Pollut. 2020. Vol. 262. 114269. https://doi.org/10.1016/j.envpol.2020.114269
  23. Luque J.A., Julià R. Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula) // Sediment. Geol., 2002. Vol. 148. P. 343–355. https://doi.org/10.1016/S0037-0738(01)00225-1
  24. Nesje A. A Piston Corer for Lacustrine and Marine Sediments // Arct. Alp. Res. 1992. Vol. 24. P. 257–259. https://doi.org/10.1080/00040851.1992.12002956
  25. Otto J.-C., Schrott L., Jaboyedoff M., Dikau R. Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland) // Earth Surf. Process. Landf. 2009. Vol. 34. P. 1726–1742. https://doi.org/10.1002/esp.1856
  26. Owens P., Slaymaker O. Late Holocene sediment yields in small alpine and subalpine drainage basins, British Columbia / D.E. Walling, T.R. Davies, B. Hasholt (Eds). Erosion, Debris Flows and Environment in Mountain Regions. IAHS Publication 209. IAHS: Wallingford, 1992. P. 147–154.
  27. Putyrskaya V., Klemt E., Röllin S., Corcho-Alvarado J.A., Sahli H. Dating of recent sediments from Lago Maggiore and Lago di Lugano (Switzerland/Italy) using 137Cs and 210Pb // J. Environ. Radioact. 2020. Vol. 212. 106 135. https://doi.org/10.1016/j.jenvrad.2019.106135
  28. Rose N.L., Morley D., Appleby P.G., Battarbee R.W., Alli-ksaar T., Guilizzoni P., Jeppesen E., Korhola A., Punning J.-M. Sediment accumulation rates in European lakes since AD 1850: trends, reference conditions and exceedance // J. Paleolimnol. 2011. Vol. 45. P. 447–468. https://doi.org/10.1007/s10933-010-9424-6
  29. Reimer P.J., Bard E., Bayliss A., Beck W.J., Blackwell P.G., Ramsey C.B., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser F.K., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott M.E., Southon J.R., Staff R.A., Turney C., van der Plicht J. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50е000 Years cal BP // Radiocarb. 2013. Vol. 55. №. 4. P. 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947
  30. Schlunegger F., Hinderer M. Pleistocene/Holocene climate change, re-establishment of fluvial drainage network and increase in relief in the Swiss Alps // Terra Nova. 2003. Vol. 15. P. 88–95. https://doi.org/10.1046/j.1365-3121.2003.00469.x
  31. Semertzidou P., Piliposian G.T., Chiverrell R.C., Appleby P.G. Long-term stability of records of fallout radionuclides in the sediments of Brotherswater, Cumbria (UK) // J. Paleolimnol. 2019. Vol. 61. P. 231–249. https://doi.org/10.1007/s10933-018-0055-7
  32. Su C.-C., Huh C.-A. 210Pb, 137Cs and 239,240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides // Mar. Geol. 2002. Vol. 183. P. 163–178. https://doi.org/10.1016/S0025-3227(02)00165-2
  33. Wang F., Wang H., Li J., Pei Y., Fan C., Tian L., Shang Z., Song M., Geng Y. 210Pb and 137Cs measurements in the Circum Bohai Sea coastal region: sedimentation rates and implications // Front. Earth Sci. China. 2008. Vol. 2. P. 276–282. https://doi.org/10.1007/s11707-008-0046-5
  34. Xu M., Bogen J., Wang Z., Bønsnes T.E., Gytri S. Pro-glacial lake sedimentation from jökulhlaups (GLOF), Blåmannsisen, northern Norway // Earth Surf. Process. Landf. 2015. Vol. 40. P. 654–665. https://doi.org/10.1002/esp.3664
  35. Yamada M., Aono T. 210Pb and 234Th in settling particles collected by time-series sediment traps in the Okinawa Trough // Deep Sea Res. P. II: Top. Stud. Ocean. 2003. Vol. 50. № 2. P. 487–501. https://doi.org/10.1016/S0967-0645(02)00466-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (4MB)
3.

Download (3MB)
4.

Download (1MB)
5.

Download (367KB)
6.

Download (1MB)
7.

Download (1MB)
8.

Download (1MB)
9.

Download (1MB)

Copyright (c) 2023 Н.В. Кузьменкова, В.Н. Голосов, Е.А. Грабенко, М.Ю. Александрин, В.А. Шишков, О.Н. Быхалова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies