Probabilistic Models in the Dynamics of Urban Projects Financing

Cover Page

Cite item

Abstract

This article explores the application of probabilistic models to analyze the expenditure dynamics of urban project financing. We employ Doob's decomposition for discrete submartingales as a mathematical framework. A general approach to modeling expenditure growth is described, based on representing the financing dynamics as a stochastic process consisting of a martingale and a compensator. Within the proposed model, the compensator reflects the planned expenditure growth, while the martingale represents random deviations from the plan. To validate the model's applicability, we analyzed project financing data from Moscow. The study identified trend components and random residuals, which were then tested for the martingale property using the Ljung-Box test. The analysis indicates a lack of statistically significant autocorrelation, supporting their interpretation as a martingale in Doob's decomposition. The findings suggest that the proposed method can be used for forecasting and analyzing the sustainability of budgetary financing, as well as for assessing the impact of random factors on the implementation of urban projects.

About the authors

R. V. Shamin

Moscow Metropolitan Governance Yuri Luzhkov University

Email: ShaminRV@edu.mos.ru
SPIN-code: 8966-0169
28 Sretenka ulitsa, Moscow, 107045

N. B. Golovanova

MIREA - Russian Technological University

Email: golovanova@mirea.ru
SPIN-code: 7197-9948
78 Vernadskogo prospect, Moscow, 119454

References

  1. Moscow-2040: Creating the Best City on Earth: Report by Mayor of Moscow S. S. Sobyanin on the Results of the Moscow Government's Activities. 34 p. Available at: https://www.mos.ru/upload/newsfeed/news/cea8c9b542298048e154f2d7c0b7f1fb/Otchet_o_rezul_tatah_deyatel_nosti_Pravitel_stva_Moskvi_2024.pdf (accessed: 22.03.2025). (In Russ.).
  2. The Moscow Government Approved the Forecast of Socio-Economic Development for 2025-2027. The Mayor and the Government of Moscow Official Portal: [website]. Available at: https://www.mos.ru/mayor/themes/11877050/ (accessed: 22.03.2025). (In Russ.).
  3. Key Budget Parameters. Open Budget of the City of Moscow: [website]. Available at: https://budget.mos.ru/budget/ (accessed: 10.03.2025). (In Russ.).
  4. Bulinsky A. V., Shiryaev A. N. Teoriya Sluchainyh Protsessov [Theory of Stochastic Processes]. Moscow: FIZMATLIT Publ., 2005. 402 p. (In Russ.).
  5. Doob J. L. Veroyatnostnye Protsessy [Stochastic Processes]. Moscow: Foreign Literature Publishing House Publ., 1956. 605 p. (In Russ.).
  6. Box G. E. P., Pierce D. A. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association, 1970, vol. 65, no. 332, pp. 1509-1526.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).