An algorithm for optimizing the allocation of financial resources between support and development

Cover Page

Cite item

Abstract

the aim of the research is to develop an algorithm for optimizing the allocation of financial resources between the support of existing IT services and the development of new solutions in technology companies. This problem is particularly relevant in the context of accelerating digital transformation and the need for strategic flexibility. Methods: comparative analysis, mathematical and simulation modeling, target programming methods, as well as expert validation of resource allocation scenarios, which allows taking into account both quantitative and qualitative performance indicators, are used as methods in the presented study. Findings: The study presents models that identify the imbalance between financing support and innovative development, take into account SLA and ROI indicators, and predict the effects of budget redistribution in the short and long term. The developed algorithm demonstrates the potential to reduce support costs while maintaining the reliability of services and simultaneously accelerating innovation growth, which is confirmed by simulation scenarios and expert assessment. Conclusions: the proposed approach to optimizing the IT budget provides a quantitative justification for the balance between current operations and development investments. This approach allows companies to build a sustainable development trajectory, increase the efficiency of resource provision and strengthen competitiveness in the global digital market.

About the authors

M. Azatyan

Fractional CFO for AI and DeepTech Startups, Armenia

References

  1. Гачаев А.М., Успаева М.Г. Разработка оптимизационных алгоритмов для распределения активов в многокомпонентных инвестиционных портфелях // Environmental management issues. 2024. Т. 3. № 6. С. 92 – 101. doi: 10.25726/p5415-5012-3322-z
  2. Мягкова М.В., Кузнецова Е.Г., Шилкина Т.Е. Оптимизация структуры финансовых ресурсов организации // Вестник РУК. 2022. № 2 (48). С. 38 – 44. URL: https://cyberleninka.ru/article/n/optimizatsiya-struktury-finansovyh-resursov-organizatsii (дата обращения: 25.06.2025)
  3. Хайров Р.Р., Шилкина Т.Е., Мягкова М.В. Формирование и использование финансовых ресурсов предприятия // Управленческий учет. 2023. № 4. С. 305 – 312. URL: https://uprav-uchet.ru/index.php/journal/article/view/3365 (дата обращения: 26.06.2025)
  4. Avgeriou P., Ozkaya I., Chatzigeorgiou A., Ciolkowski M., Ernst N. A., Koontz R.J., Poort E., Shull F. Technical Debt Management: The Road Ahead for Successful Software Delivery. 2024. URL: https://arxiv.org/html/2403.06484v1 (дата обращения: 24.06.2025)
  5. Dai K., Xu Y. Optimal allocation algorithm of financial resources based on return-risk equilibrium // Journal of Industrial and Management Optimization. 2025. Vol. 21. No. 7. P. 5093 – 5113. doi: 10.3934/jimo.2025086
  6. Hussain A., Kim H.-M. Goal-Programming-Based Multi-Objective Optimization in Off-Grid Microgrids // Sustainability. 2020. Vol. 12. No. 19. Article ID 8119. doi: 10.3390/su12198119
  7. Jiang P. Algorithm for Optimizing Financial Resource Allocation Scheduling Based on Deep Reinforcement Learning // ICDSM 2024: International Conference on Decision Science & Management. November 2024. doi: 10.1145/3686081.3686094
  8. Kark K. Reinventing tech finance: The evolution from IT budgets to technology investments. 2020. URL: https://www.deloitte.com/us/en/insights/topics/operations/tech-finance-technology-investment-budgeting-processes.html (дата обращения: 26.06.2025)
  9. Liu L., Tang Y., Luo X. Allocation of Financial Resources and Green Economic Development: Evidence from China // Sustainability. 2024. Vol. 16. No. 17. Article ID 7424. doi: 10.3390/su16177424
  10. Lyua S., Jiao Z. Optimization of Financial Asset Allocation and Risk Management Strategies Combining Internet of Things and Clustering Algorithms // IEEE Internet of Things Journal. 2024. PP(99):1-1. doi: 10.1109/JIOT.2024.3486714

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).