Role of membrane components in the initiation and progression of tumour growth in endometrial cancer
- Authors: Atadzhanov I.B.1,2, Guskova O.N.1,3, Shestakova V.G.1
-
Affiliations:
- Tver State Medical University
- Tver Regional Oncology Dispensary
- Medical Unit No. 57 of FMBA of Russia
- Issue: Vol 10, No 2 (2025)
- Pages: 92-99
- Section: Pathological anatomy
- URL: https://journals.rcsi.science/2500-1388/article/view/316059
- DOI: https://doi.org/10.35693/SIM678261
- ID: 316059
Cite item
Abstract
This review discusses the role of membrane components in the initiation and progression of endometrial cancer. Cancer cells that are the substrate of the tumor growth are subject to multiple interactions both among themselves and with the tumor microenvironment.The cell membrane of tumor cells undergoes changes, resulting in simplified antigenic structure and the expression of molecules found in embryonic tissues, changes in the intercellular contacts that maintain epithelial homeostasis. Dense contacts form the basis for the preservation of normal endometrial histological organization. These changes also affect intercellular contacts, leading to the alteration of mechanical properties and invasive growth of tumor cells. In addition, components of dense contacts are participants of intracellular signal transduction pathways. The review highlights the potential role of claudin proteins, specifically in tight junctions and intracellular signaling, as promising targets for further study. Epithelial-mesenchymal transformation (EMT) represented in normal tissues in processes of reparation, plays a significant role in endometrial cancer progression, and the altered characterization of E-cadherin and β-catenin is important in understanding EMT’s role in the disease. Researchers are focusing on the E-cadherin as a component of oncogene activation pathways. Hyperestrogenemia (high serum estrogen levels) is known to underlie Type I endometrial adenocarcinoma. Additionally, estrogen receptors and claudins are implicated in intracellular signaling activating cell proliferation both in the norm and in the course of disease. Recent research also involved other molecules serving as targets for estrogens, e.g. claudin proteins. Change of clausin expression profiles mediated by sex hormones manifest both in suppression and replacement of one protein with another. Further study of cell membrane-associated markers has the potential to provide insights into tumor biology and aid in the development of new therapeutic approaches for endometrial cancer.
Full Text
##article.viewOnOriginalSite##About the authors
Ilyas B. Atadzhanov
Tver State Medical University; Tver Regional Oncology Dispensary
Author for correspondence.
Email: atadzanov.ilyas@ya.ru
ORCID iD: 0000-0003-1995-2661
resident of the Department of Pathological Anatomy
Russian Federation, Tver; TverOksana N. Guskova
Tver State Medical University; Medical Unit No. 57 of FMBA of Russia
Email: guskovaon@tvgmu.ru
ORCID iD: 0000-0003-1635-7533
MD, Cand. Sci. (Medicine), Associate Professor, Head of the Department of Pathological Anatomy
Russian Federation, Tver; Redkino, Tver RegionValeria G. Shestakova
Tver State Medical University
Email: shestvg@mail.ru
ORCID iD: 0000-0003-1136-7396
MD, Dr. Sci. (Medicine), Associate Professor, Head of the Department of Anatomy, Histology and Embryology
Russian Federation, TverReferences
- Kaprin AD, Starinsky VV, Shakhzadova AO. Malignant Neoplasms in Russia in 2023 (incidence and mortality). M., 2024. (In Russ.). [Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М., 2024].
- Rosai J. Rosai and Ackerman’s Surgical Pathology E-Book. 10th Edition. Elsevier Health Sciences. 2011. URL: https://books.google.ru/books?id=1CKX7aGBbUsC
- Getz G, Gabriel SB, Cibulskis K, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67-73. doi: 10.1038/nature12113
- Furuse M, Izumi Y, Oda Y, et al. Molecular organization of tricellular tight junctions. Tissue Barriers. 2014;2(3):e28755-1-e28755-6. doi: 10.4161/tisb.28960
- Saito T, Tanaka R, Wataba K, et al. Overexpression of estrogen receptor-α gene suppresses gap junctional intercellular communication in endometrial carcinoma cells. Oncogene. 2004;23(5):1109-1116. doi: 10.1038/sj.onc.1207215
- Jahn E, Classen-Linke I, Kusche M, et al. Expression of gap junction connexins in the human endometrium throughout the menstrual cycle. Human Reproduction. 1995;10(10):2666-2670. doi: 10.1093/oxfordjournals.humrep.a135764
- Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update. 2019;25(1):114-133. doi: 10.1093/humupd/dmy035
- Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-196. doi: 10.1038/nrm3758
- Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel). 2022;14(20):5056. doi: 10.3390/cancers14205056
- Kyuno T, Kyuno D, Kohno T, et al. Tricellular tight junction protein LSR/angulin-1 contributes to the epithelial barrier and malignancy in human pancreatic cancer cell line. Histochem Cell Biol. 2020;153(1):5-16. doi: 10.1007/s00418-019-01821-4
- Arai W, Konno T, Kohno T, et al. Downregulation of Angulin-1/LSR Induces Malignancy via Upregulation of EGF-Dependent Claudin-2 and TGF-β-Dependent Cell Metabolism in Human Lung Adenocarcinoma A549 Cells. Oncotarget. 2023:14:261-275. doi: 10.18632/oncotarget.27728
- Konno T, Kohno T, Okada T, et al. ASPP2 suppression promotes malignancy via LSR and YAP in human endometrial cancer. Histochem Cell Biol. 2020;154(2):197-213. doi: 10.1007/s00418-020-01876-8
- Chen X, An Y, Gao Y, et al. Rare Deleterious PARD3 Variants in the aPKC-Binding Region are Implicated in the Pathogenesis of Human Cranial Neural Tube Defects Via Disrupting Apical Tight Junction Formation. Hum Mutat. 2017;38(4):378-389. doi: 10.1002/humu.23153
- Peng J, Li X, Zhang Y, et al. Par3/integrin β1 regulates embryo adhesion via changing endometrial luminal epithelium polarity. Biol Reprod. 2021;104(6):1228-1238. doi: 10.1093/biolre/ioab033
- Shimada H, Kohno T, Konno T, et al. The Roles of Tricellular Tight Junction Protein Angulin-1/Lipolysis-Stimulated Lipoprotein Receptor (LSR) in Endometriosis and Endometrioid-Endometrial Carcinoma. Cancers (Basel). 2021;13(24):6341. doi: 10.3390/cancers13246341
- King JS, Kay RR. The origins and evolution of macropinocytosis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2019;374(1765). doi: 10.1098/rstb.2018.0158
- Banin VV. Mechanisms of exchange of the internal environment. M., 2000. (In Russ.). [Банин В.В. Механизмы обмена внутренней среды. M., 2000].
- Yan X, Liu Z, Chen Y. Regulation of TGF-β signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009;41(4):263-272. doi: 10.1093/abbs/gmp018
- Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science (1979). 2017;357(6352):eaan2507. doi: 10.1126/science.aan2507
- Horiguchi K, Shirakihara T, Nakano A, et al. Role of Ras signaling in the induction of snail by transforming growth factor-β. Journal of Biological Chemistry. 2009;284(1):245-253. doi: 10.1074/jbc.M804777200
- Eskandari E, Mahjoubi F, Motalebzadeh J. An integrated study on TFs and miRNAs in colorectal cancer metastasis and evaluation of three co-regulated candidate genes as prognostic markers. Gene. 2018;679:150-159. doi: 10.1016/j.gene.2018.09.003
- Shelton DN, Fornalik H, Neff T, et al. The role of LEF1 in endometrial gland formation and carcinogenesis. PLoS One. 2012;7(7). doi: 10.1371/journal.pone.0040312
- Litvinov S V, Velders MP, Bakker HA, et al. Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. Journal of Cell Biology. 1994;125(2):437-446. doi: 10.1083/jcb.125.2.437
- Maetzel D, Denzel S, Mack B, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol. 2009;11(2):162-171. doi: 10.1038/ncb1824
- Hsu YT, Osmulski P, Wang Y, et al. EpCAM-regulated transcription exerts influences on nanomechanical properties of endometrial cancer cells that promote epithelial-to-mesenchymal transition. Cancer Res. 2016;76(21):6171-6182. doi: 10.1158/0008-5472.CAN-16-0752
- Ahn J Il, Yoo JY, Kim TH, et al. G-protein coupled receptor 64 (GPR64) acts as a tumor suppressor in endometrial cancer. BMC Cancer. 2019;19(1):810. doi: 10.1186/s12885-019-5998-1
- Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246-257. doi: 10.1038/nrc3458
- Shen X, Li Q, Sun Y, et al. The Hippo pathway in endometrial cancer: a potential therapeutic target? Front Oncol. 2023;13:1273345. doi: 10.3389/fonc.2023.1273345
- Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell. 2016;29(6):783-803. doi: 10.1016/j.ccell.2016.05.005
- Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20(8):888-899. doi: 10.1038/s41556-018-0142-z
- Wang T, Wang M, Fang S, et al. Fibulin-4 Is Associated with Prognosis of Endometrial Cancer Patients and Inhibits Cancer Cell Invasion and Metastasis via Wnt/β-Catenin Signaling Pathway. Oncotarget. 2017;8(12):18991-19012. doi: 10.18632/oncotarget.15086
- Gallagher WM, Argentini M, Ronique Sierra V, et al. MBP1: A Novel Mutant P53-Specific Protein Partner with Oncogenic Properties. Oncogene. 1999;18(24):3608-16. doi: 10.1038/sj.onc.1202937
- Song EL, Hou YP, Yu SP, et al. EFEMP1 expression promotes angiogenesis and accelerates the growth of cervical cancer in vivo. Gynecol Oncol. 2011;121(1):174-180. doi: 10.1016/j.ygyno.2010.11.004
- Li X, Deng W, Nail CD, et al. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene. 2006;25(4):609-621. doi: 10.1038/sj.onc.1209077
- Du H, Yang X, Fan J, Du X. Claudin 6: Therapeutic prospects for tumours, and mechanisms of expression and regulation (Review). Mol Med Rep. 2021;24(3):677. doi: 10.3892/mmr.2021.12316
- Sobel G, Németh J, Kiss A, et al. Claudin 1 differentiates endometrioid and serous papillary endometrial adenocarcinoma. Gynecol Oncol. 2006;103(2):591-598. doi: 10.1016/j.ygyno.2006.04.005
- Gowrikumar S, Singh AB, Dhawan P. Role of claudin proteins in regulating cancer stem cells and chemoresistance-potential implication in disease prognosis and therapy. Int J Mol Sci. 2020;21(1):53. doi: 10.3390/ijms21010053
- Stadler CR, Bähr-Mahmud H, Plum LM, et al. Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6. Oncoimmunology. 2016;5(3):e1091555. doi: 10.1080/2162402X.2015.1091555
- Ben-David U, Nudel N, Benvenisty N. Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun. 2013;4(1):1992. doi: 10.1038/ncomms2992
- Wu Q, Liu Y, Ren Y, et al. Tight junction protein, claudin-6, downregulates the malignant phenotype of breast carcinoma. European Journal of Cancer Prevention. 2010;19(3):186-194. doi: 10.1097/CEJ.0b013e328337210e
- Someya M, Kojima T, Ogawa M, et al. Regulation of tight junctions by sex hormones in normal human endometrial epithelial cells and uterus cancer cell line Sawano. Cell Tissue Res. 2013;354(2):481-494. doi: 10.1007/s00441-013-1676-9
- Zhang C, Guo C, Li Y, et al. Identification of Claudin-6 as a Molecular Biomarker in Pan-Cancer Through Multiple Omics Integrative Analysis. Front Cell Dev Biol. 2021;9:726656. doi: 10.3389/fcell.2021.726656
- Cuevas ME, Gaska JM, Gist AC, et al. Estrogen-dependent expression and subcellular localization of the tight junction protein claudin-4 in HEC-1A endometrial cancer cells. Int J Oncol. 2015;47(2):650-656. doi: 10.3892/ijo.2015.3030
- Zeng R, Li X, Gorodeski GI. Estrogen Abrogates Transcervical Tight Junctional Resistance by Acceleration of Occludin Modulation. J Clin Endocrinol Metab. 2004;89(10):5145-5155. doi: 10.1210/jc.2004-0823
- Buck VU, Windoffer R, Leube RE, Classen-Linke I. Redistribution of adhering junctions in human endometrial epithelial cells during the implantation window of the menstrual cycle. Histochem Cell Biol. 2012;137(6):777-790. doi: 10.1007/s00418-012-0929-0
Supplementary files
