On the Boyarsky-Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift
- 作者: Alkhutov Y.A.1, Chechkin G.A.2,3,4
-
隶属关系:
- Vladimir State University named after Alexander and Nikolay Stoletovs
- Lomonosov Moscow State University
- Institute of Mathematics with Computing Center, Ufa Federal Research Centre, Russian Academy of Sciences
- Institute of Mathematics and Mathematical Modeling
- 期: 卷 70, 编号 1 (2024): Functional spaces. Differential operators. Problems of mathematics education
- 页面: 1-14
- 栏目: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327883
- DOI: https://doi.org/10.22363/2413-3639-2024-70-1-1-14
- EDN: https://elibrary.ru/ZXGOMR
- ID: 327883
如何引用文章
全文:
详细
We establish the increased integrability of the gradient of the solution to the Dirichlet problem for the Laplace operator with lower terms and prove the unique solvability of this problem.
作者简介
Yu. Alkhutov
Vladimir State University named after Alexander and Nikolay Stoletovs
编辑信件的主要联系方式.
Email: yurij-alkhutov@yandex.ru
Vladimir, Russia
G. Chechkin
Lomonosov Moscow State University; Institute of Mathematics with Computing Center, Ufa Federal Research Centre, Russian Academy of Sciences; Institute of Mathematics and Mathematical Modeling
Email: chechkin@mech.math.msu.su
Almaty, Kazakhstan
参考
- Боярский Б. В. Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами// Мат. сб. - 1957. - 43, № 4. - С. 451-503
- Гилбарг Д., Трудингер Н. С. Эллиптические дифференциальные уравнения с частными производными второго порядка. - М.: Наука, 1989
- Ладыженская О. А., Уральцева Н. Н. Линейные и квазилинейные уравнения эллиптического типа. - М.: Наука, 1973
- Чечкин Г. А., Чечкина Т. П. Оценка Боярского-Мейерса для дивергентных эллиптических уравнений второго порядка. Два пространственных примера// Пробл. мат. анализа. - 2022. - 119. - С. 107-116
- Чечкина А. Г. О задаче Зарембы для p-эллиптического уравнения// Мат. сб. - 2023. - 214, № 9. - С. 144-160
- Acerbi E., Mingione G. Gradient estimates for the p(x)-Laplacian system// J. Reine Angew. Math. - 2005. - 584. - С. 117-148
- Alkhutov Yu. A., Chechkin G. A. Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation// Dokl. Math. - 2021. - 103, № 2. - С. 69-71
- Alkhutov Yu. A., Chechkin G. A. The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form// C. R. M´ecanique. - 2021. - 349, № 2. - С. 299-304
- Alkhutov Yu. A., Chechkin G. A., Maz’ya V. G. On the Bojarski-Meyers estimate of a solution to the Zaremba problem// Arch. Ration. Mech. Anal. - 2022. - 245, № 2. - С. 1197-1211
- Chechkin G. A. The Meyers estimates for domains perforated along the boundary// Mathematics. - 2021. - 9, № 23. - 3015
- Cimatti G., Prodi G. Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor// Ann. Mat. Pura Appl. - 1988. - 63. - С. 227-236
- Diening L., Schwarzsacher S. Global gradient estimates for the p(·)-Laplacian// Nonlinear Anal. - 2014. - 106. - С. 70-85
- Gehring F. W. The Lp-integrability of the partial derivatives of a quasiconformal mapping// Acta Math. - 1973. - 130. - С. 265-277
- Giaquinta M., Modica G. Regularity results for some classes of higher order nonlinear elliptic systems// J. Reine Angew. Math. - 1979. - 311/312. - С. 145-169
- Howison S. D., Rodriges J. F., Shillor M. Stationary solutions to the thermistor problem// J. Math. Anal. Appl. - 1993. - 174. - С. 573-588
- Lax P. D., Milgram A. Parabolic equations// В сб.: «Contributions to the Theory of Partial Differential Equations». - Princeton: Princeton Univ. Press, 1954. - С. 167-190
- Meyers N. G. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations// Ann. Sc. Norm. Super. Pisa Cl. Sci. - 1963. - 17, № 3. - С. 189-206
- Skrypnik I. V. Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. - Providence: AMS, 1994
- Zhikov V. V. On some variational problems// Russ. J. Math. Phys. - 1997. - 5, № 1. - С. 105-116
补充文件
