On the Boyarsky-Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift

Capa

Citar

Texto integral

Resumo

We establish the increased integrability of the gradient of the solution to the Dirichlet problem for the Laplace operator with lower terms and prove the unique solvability of this problem.

Sobre autores

Yu. Alkhutov

Vladimir State University named after Alexander and Nikolay Stoletovs

Autor responsável pela correspondência
Email: yurij-alkhutov@yandex.ru
Vladimir, Russia

G. Chechkin

Lomonosov Moscow State University; Institute of Mathematics with Computing Center, Ufa Federal Research Centre, Russian Academy of Sciences; Institute of Mathematics and Mathematical Modeling

Email: chechkin@mech.math.msu.su
Almaty, Kazakhstan

Bibliografia

  1. Боярский Б. В. Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами// Мат. сб. - 1957. - 43, № 4. - С. 451-503
  2. Гилбарг Д., Трудингер Н. С. Эллиптические дифференциальные уравнения с частными производными второго порядка. - М.: Наука, 1989
  3. Ладыженская О. А., Уральцева Н. Н. Линейные и квазилинейные уравнения эллиптического типа. - М.: Наука, 1973
  4. Чечкин Г. А., Чечкина Т. П. Оценка Боярского-Мейерса для дивергентных эллиптических уравнений второго порядка. Два пространственных примера// Пробл. мат. анализа. - 2022. - 119. - С. 107-116
  5. Чечкина А. Г. О задаче Зарембы для p-эллиптического уравнения// Мат. сб. - 2023. - 214, № 9. - С. 144-160
  6. Acerbi E., Mingione G. Gradient estimates for the p(x)-Laplacian system// J. Reine Angew. Math. - 2005. - 584. - С. 117-148
  7. Alkhutov Yu. A., Chechkin G. A. Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation// Dokl. Math. - 2021. - 103, № 2. - С. 69-71
  8. Alkhutov Yu. A., Chechkin G. A. The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form// C. R. M´ecanique. - 2021. - 349, № 2. - С. 299-304
  9. Alkhutov Yu. A., Chechkin G. A., Maz’ya V. G. On the Bojarski-Meyers estimate of a solution to the Zaremba problem// Arch. Ration. Mech. Anal. - 2022. - 245, № 2. - С. 1197-1211
  10. Chechkin G. A. The Meyers estimates for domains perforated along the boundary// Mathematics. - 2021. - 9, № 23. - 3015
  11. Cimatti G., Prodi G. Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor// Ann. Mat. Pura Appl. - 1988. - 63. - С. 227-236
  12. Diening L., Schwarzsacher S. Global gradient estimates for the p(·)-Laplacian// Nonlinear Anal. - 2014. - 106. - С. 70-85
  13. Gehring F. W. The Lp-integrability of the partial derivatives of a quasiconformal mapping// Acta Math. - 1973. - 130. - С. 265-277
  14. Giaquinta M., Modica G. Regularity results for some classes of higher order nonlinear elliptic systems// J. Reine Angew. Math. - 1979. - 311/312. - С. 145-169
  15. Howison S. D., Rodriges J. F., Shillor M. Stationary solutions to the thermistor problem// J. Math. Anal. Appl. - 1993. - 174. - С. 573-588
  16. Lax P. D., Milgram A. Parabolic equations// В сб.: «Contributions to the Theory of Partial Differential Equations». - Princeton: Princeton Univ. Press, 1954. - С. 167-190
  17. Meyers N. G. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations// Ann. Sc. Norm. Super. Pisa Cl. Sci. - 1963. - 17, № 3. - С. 189-206
  18. Skrypnik I. V. Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. - Providence: AMS, 1994
  19. Zhikov V. V. On some variational problems// Russ. J. Math. Phys. - 1997. - 5, № 1. - С. 105-116

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».