A Fuzzy MLP Approach for Identification of Nonlinear Systems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In case of decision making problems, identification of non-linear systems is an important issue. Identification of non-linear systems using a multilayer perceptron (MLP) trained with back propagation becomes much complex with an increase in number of input data, number of layers, number of nodes, and number of iterations in computation. In this paper, an attempt has been made to use fuzzy MLP and its learning algorithm for identification of non-linear system. The fuzzy MLP and its training algorithm which allows to accelerate a process of training, which exceeds in comparing with classical MLP is proposed. Results show a sharp reduction in search for optimal parameters of a neuro fuzzy model as compared to the classical MLP. A training performance comparison has been carried out between MLP and the proposed fuzzy-MLP model. The time and space complexities of the algorithms have been analyzed. It is observed, that number of epochs has sharply reduced and performance increased compared with classical MLP.

Авторлар туралы

A Marakhimov

National University of Uzbekistan named after M. Ulugbek

Email: avaz.marakhimov@yandex.ru
Tashkent, Uzbekistan

K Khudaybergenov

National University of Uzbekistan named after M. Ulugbek

Email: kabul85@mail.ru
Tashkent, Uzbekistan

Әдебиет тізімі

  1. Борисов В. В., Круглов В. В., Федулов А. С. Нечеткие модели и сети. 2-е изд. - М.: «Горячая линия - Телеком», 2012.
  2. Митюшкин Ю. И., Мокин Б. И., Ротштейн А. П. Soft Computing: идентификация закономерностей нечеткими базами знаний. - Вiнниця: Унiверсум, 2002.
  3. Пегат А. Нечеткое моделирование и управление. - М.: БИНОМ. Лаборатория знаний, 2013.
  4. Штовба С. Д. Проектирование нечетких систем средствами MATLAB. - М.: «Горячая линия - Телеком», 2007.
  5. Galushkin A. I. Neural networks theory. - Berlin-Heidelberg: Springer-Verlag, 2007.
  6. Haykin S. Neural networks. A comprehensive foundation. 2nd ed. - New York: IEEE, 1999.
  7. Jose K. M., Fabio M. A. Nonlinear system identification based on modified ANFIS// Proc. 2015 12th Int. Conf. on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21-23 July 2015. - Colmar, 2015. - С. 588-595.
  8. Nikov A., Georgiev T. A fuzzy neural network and its matlab simulation// Proc. ITI99 21st Int. Conf. on Information Technology Interfaces, Pula, Croatia, June 15-18. - Pula, 1999. - С. 413-418.
  9. Qing-Song M. Approximation ability of regular fuzzy neural networks to fuzzy-valued functions in MS convergence structure// Proc. 32nd Chinese Control Conf., Xian, China, 26-28 July 2013. - Xian, 2013. - INSPEC Acc. Num. 13862419.
  10. Rakesh B. P., Satish K. Sh. Identification of nonlinear system using computational paradigms// Proc. Int. Conf. on Automatic Control and Artificial Intelligence, Xiamen, China, 3-5 March 2012. - Xiamen, 2012. - С. 1156-1159.
  11. Rotshtein A. P. Design and tuning of fuzzy if-then rules for medical diagnosis// В сб.: «Fuzzy and neural- fuzzy systems in medical and biomedical engineering». - Boca-Raton: CRC Press, 1998. - С. 243-289.
  12. Rotshtein A. P., Mityushkin Y. I. Extraction of fuzzy rules from experimental data using genetic algorithms// Cybernet. Systems Anal. - 2001. - № 3. - С. 45-53.
  13. Rotshtein A. P., Shtovba S. D. Identification of non-linear dependencies of fuzzy knowledge bases with fuzzy learning inputs// Cybernet. Systems Anal. - 2006. - № 2. - С. 17-24.
  14. Rumelhart D. E., Hinton G. E., Williams R. J. Learning internal representations by back-propagating errors// Nature. - 1986. - 323. - С. 533-536.
  15. Zimmermann H. J. Fuzzy set theory and its applications. - Dordrecht-Boston: Kluwer, 1991.
  16. Zongyuan Z., Shuxiang X., Byeong H. K., Mir M., Yunling L., Rainer W. Investigation and improvement of multi-layer perceptron neural networks for credit scoring// Expert Syst. Appl. - 2015. - 42, № 7. - С. 3508-3516.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».