A Fuzzy MLP Approach for Identification of Nonlinear Systems
- Авторлар: Marakhimov AR1, Khudaybergenov KK1
-
Мекемелер:
- National University of Uzbekistan named after M. Ulugbek
- Шығарылым: Том 65, № 1 (2019): Contemporary Problems in Mathematics and Physics
- Беттер: 44-53
- Бөлім: New Results
- URL: https://journals.rcsi.science/2413-3639/article/view/347209
- DOI: https://doi.org/10.22363/2413-3639-2019-65-1-44-53
- ID: 347209
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
A Marakhimov
National University of Uzbekistan named after M. Ulugbek
Email: avaz.marakhimov@yandex.ru
Tashkent, Uzbekistan
K Khudaybergenov
National University of Uzbekistan named after M. Ulugbek
Email: kabul85@mail.ru
Tashkent, Uzbekistan
Әдебиет тізімі
- Борисов В. В., Круглов В. В., Федулов А. С. Нечеткие модели и сети. 2-е изд. - М.: «Горячая линия - Телеком», 2012.
- Митюшкин Ю. И., Мокин Б. И., Ротштейн А. П. Soft Computing: идентификация закономерностей нечеткими базами знаний. - Вiнниця: Унiверсум, 2002.
- Пегат А. Нечеткое моделирование и управление. - М.: БИНОМ. Лаборатория знаний, 2013.
- Штовба С. Д. Проектирование нечетких систем средствами MATLAB. - М.: «Горячая линия - Телеком», 2007.
- Galushkin A. I. Neural networks theory. - Berlin-Heidelberg: Springer-Verlag, 2007.
- Haykin S. Neural networks. A comprehensive foundation. 2nd ed. - New York: IEEE, 1999.
- Jose K. M., Fabio M. A. Nonlinear system identification based on modified ANFIS// Proc. 2015 12th Int. Conf. on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21-23 July 2015. - Colmar, 2015. - С. 588-595.
- Nikov A., Georgiev T. A fuzzy neural network and its matlab simulation// Proc. ITI99 21st Int. Conf. on Information Technology Interfaces, Pula, Croatia, June 15-18. - Pula, 1999. - С. 413-418.
- Qing-Song M. Approximation ability of regular fuzzy neural networks to fuzzy-valued functions in MS convergence structure// Proc. 32nd Chinese Control Conf., Xian, China, 26-28 July 2013. - Xian, 2013. - INSPEC Acc. Num. 13862419.
- Rakesh B. P., Satish K. Sh. Identification of nonlinear system using computational paradigms// Proc. Int. Conf. on Automatic Control and Artificial Intelligence, Xiamen, China, 3-5 March 2012. - Xiamen, 2012. - С. 1156-1159.
- Rotshtein A. P. Design and tuning of fuzzy if-then rules for medical diagnosis// В сб.: «Fuzzy and neural- fuzzy systems in medical and biomedical engineering». - Boca-Raton: CRC Press, 1998. - С. 243-289.
- Rotshtein A. P., Mityushkin Y. I. Extraction of fuzzy rules from experimental data using genetic algorithms// Cybernet. Systems Anal. - 2001. - № 3. - С. 45-53.
- Rotshtein A. P., Shtovba S. D. Identification of non-linear dependencies of fuzzy knowledge bases with fuzzy learning inputs// Cybernet. Systems Anal. - 2006. - № 2. - С. 17-24.
- Rumelhart D. E., Hinton G. E., Williams R. J. Learning internal representations by back-propagating errors// Nature. - 1986. - 323. - С. 533-536.
- Zimmermann H. J. Fuzzy set theory and its applications. - Dordrecht-Boston: Kluwer, 1991.
- Zongyuan Z., Shuxiang X., Byeong H. K., Mir M., Yunling L., Rainer W. Investigation and improvement of multi-layer perceptron neural networks for credit scoring// Expert Syst. Appl. - 2015. - 42, № 7. - С. 3508-3516.
Қосымша файлдар

